

Maintenance and recommissioning of the LHC cryogenic system for the physics RUN3

October 17th, 2022

On behalf of CERN Cryogenics Group

Prepared by: Krzysztof Brodzinski, Frédéric Ferrand (Presenter), Laurent Delprat

Outline

- CERN overview
- LHC cryogenics timeline and requirements
- Analysis of availability during previous running period
- Maintenance and consolidation strategies
- Expected improvements on reliability
- New challenges for current running period
- Preliminary availability results 2022

CERN, European Organization for Nuclear Research

An Intergovernmental Organisation for the High Energy Physics Research

The accelerator complex at CERN is a succession of machines that accelerate particles to increasingly higher energies. Each machine boosts the energy of a beam of particles, before injecting the beam into the next machine in the sequence. In the Large Hadron Collider (LHC) – the last element in this chain – particle beams are accelerated up to the record energy of 6.8 TeV per beam. Most of the other accelerators in the chain have their own experimental halls where beams are used for experiments at lower energies.

The LHC cryogenic system, among the most complex and powerful in the world, allows the cooling of the superconducting magnets distributed over the 26.7 km of the accelerator's underground ring down to super fluid helium temperature at 1.9 K. In the physics detectors, it will also cool down the large spectrometer magnets at their operating temperature of 4.5 K.

Today CERN has 23 Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and United Kingdom

Cyprus, Estonia and Slovenia are Associate Member States in the pre-stage to Membership

Croatia, India, Latvia, Lithuania, Pakistan, Turkey and Ukraine are Associate Member States.

Japan and the United States of America hold Observer status with respect to the LHC, while the United States of America also holds Observer status with respect to the HL-LHC. The international organisations European Union and UNESCO currently have Observer status at CERN. The Observer status of the Russian Federation is suspended in accordance with the CERN Council Resolution of 8 March 2022. The Observer status has in the past been granted to States and international organisations.

Helium cryogenics for LHC

LHC accelerator and experiments SERVICE SYSTEM

LHC 36'000 tonnes of cold mass distributed over the 26.7 km underground accelerator

ATLAS 1'275 tonnes of cold mass

CMS 225 tonnes of cold mass

LHC cryogenics infrastructure

LHC accelerator 25 km @1.9 K of the superconducting magnets

ATLAS cooling @4.5 K of the superconducting magnetic system CMS cooling @4.5 K of the superconducting solenoid Cryogenics Plants are **distributed around the LHC** The accelerator cryogenics supply is **divided in 8 sectors** Cryogenics plants are **interconnected**

LHC cryogenics timeline and requirements

LHC RUN2 performance measurement

Cryogenics Fault Tracking categories & interdependencies

Sub systems used for statistics	Comments	
CRYO-PROD-4.5K	Compressors, ORS, dryers, turbines, ADS - any mechanical failure	
CRYO-PROD-1.8K	Compressors, ORS, turbines, ADS - any mechanical failure	
CRYO-PROD-QU	Any failure related to QUI	
CRYO-PROD-VAC	Insulation vacuum of cold boxes and QUI	
CRYO-PROD-INSTRUM	Valves, electrical heaters, sensors	
CRYO-PROD-CONTROL	Software	
CRYO-PROD-PLC	Surface installations PLCs	
CRYO-PROD-SEU	Single event upsets in electronics due to radiation in operation environment	
CRYO-PROD-OTHER	Other cryo production related issue	
CRYO-TUNNEL-INSTRUM	Sensors, electrical heaters (except for EH893, under TE-MPE responsibility), valves	
CRYO-TUNNEL-CONTROL	Software	
CRYO-TUNNEL-PLC	Tunnel installations PLCs	
CRYO-TUNNEL-SEU	Single event upsets in electronics due to radiation in operation environment	
CRYO-TUNNEL-OTHER	Other cryo tunnel related issue	
CRYO-OP-PNO-DEB	He level oscillation in a distribution feed box	
CRYO-OP-PNO-SAM	LHe level oscillation in a standalone magnet	
CRYO-OP-PNO-REF	Refrigerator tuning not optimized	
CRYO-OP-PNO-BSCR	Beam screen regulation related issue	
CRYO-OP-PNO-HF	Human factor in cryogenics operation, causing downtime (human or procedure)	
CRYO-OP-PNO-OTHER	Other non-optimization leading to downtime	

Technical Services

Cryogenics Equipment

Users

LHC RUN2 performance measurement

LHC CRYO AVAILABILITY SUMMARY FROM RUN 1 TO RUN 2

Analysis of RUN2 unavailability with root cause associated to Cryogenics

CRYO FAULT TRACKING SUMMARY				
Voor		CRYO Losses	Cumulated	Loss
rear	•	count	duration (I	h:m)
2015		166	2	59:20
2016		27	,	92:17
2017		27	1	07:20
2018		20	1	72:34
Total		240) 6:	31:31

Loss of Cryo Maintain conditions

Prioritization of actions to improve availability

CRYO FAULT TRACKING

Sub System 1	Sub System 2	Events	Cumulated Loss duration (h:m)	
PRODUCTION	1.8K	19	176:12	
PRODUCTION	PLC	8	130:37	
PRODUCTION	INSTRUMENTATION	13	73:37	
TUNNEL	INSTRUMENTATION	38	67:09	
PRODUCTION	4.5K	5	65:33	
OPERATION	HUMAN FACTOR	8	56:45	
OPERATION	DFB	121	27:11	
PRODUCTION	CONTROL	1	12:52	
OPERATION	PROCESS NOT OPTIMIZED	1	10:47	
OPERATION	PROCESS NOT OPTIMIZED	3	4:07	
PRODUCTION	VACUUM	2	2:56	
TUNNEL	PLC	1	2:22	
OPERATION	STAND ALONE MAGNET	12	1:05	
Other		8	0:18	
Total		240	631:31	

CONSOLIDATION

RELIABILITY IMPROVEMENT PROGRAM Refurbishment of Cold Compressor electrical cabinet and process control

CONSOLIDATION

END OF LIFE PROGRAM Replacement of control PLC and consolidation of CEM to reduce failure rate

PROCESS REVIEW

Process review and measurement oil removal performance to identify deviations and adapt coalescing filters in some cases

PROCEDURE & TRAINING

Review of procedures used in Control Room for critical restarts and operator training

Consolidation programs at a glance

 Table 3. Main cryogenics consolidation activities of the LS2.

Objective	Project	Volume
	High stage compressors bearing size increase	11 compressors
	Oil pumps with magnetic couplings	12 pumps
Reliability	Refurbishment of Cold Compressor electronic	4 installations
improvement	Switchable water-cooling filters	5 filters
	Cryogenic temperature sensors replacement	320 sensors
	Replacement of ATLAS MR compressor	1 compressor
	LHC old generation PLC upgrade	71 PLC
	Experiment cryogenics control electric upgrade	10 PLC
End of life	Refurbishment of electrical cabinets	24 units
management	Compressor set cable replacement	3'000 m of cable
	Instrumentation cable replacement	800 m of cable
	Oil pumps with magnetic couplings	16 pumps
New functionalities	LHC global mass flow measurement at cold	7 flowmeters

Cryogenics infrastructure maintenance plan

Compressor station & Oil Removal System

UN to FAIL Turbines

Yearly Electrical cabinets thermography Yearly Critical instrumentation checks 4-Yr

Checked Criteria Multiple : spectrum analysis, RMS Monthly Multiple : oxidation, particles Over heating temperature Deviating value

EVENTIVE Maintenance program

Oil pumps Revision Activated charcoal load replacement Coalescing filters replacement Screw compressor Major Overhauling High Voltage Motors Vacuum pumps revisions Safety chain check Safety valves test bench test Water Heat Exchangers chemical cleaning Critical instrumentation & valves check

8'000(minor) & 24'000(major) running hours 24'000 running hours None or 24'000 running hours 40'000 running hours 30'000(bearings) & 40'000(sleeve bearings) running hours 8'000 to 40'000 running hours Yearly 2-Yr, 4Yr, 5-Yr 4-Yr 4-Yr

Cold Boxes

		Checked	Criteria	
	Electrical cabinets thermography	Yearly	Over heating temperature	
	Critical instrumentation checks	4-Yr	Deviating value	
	Cold Compressors	4-Yr	Mechanical clearance	
	Heat exchangers	4-Yr	Tightness test	
	Turbine filters	Yearly	Delta P	
P	REVENTIVE Maintenance program			
	Safety valves test bench or local test	2-Yr, 4Yr, 5-Yr		
	Safety chain check	Yearly		
	Water Heat Exchangers chemical cleaning	4-Yr		
	Vacuum pumps revisions	8'000 to 24'000 running hours		
	Critical valves & instrumentation check	4-Yr		
	Turbine filters	4-Yr (when vacuum break required)		

4-Yr (when vacuum break required)

Storage, Distribution & Cryostat PREDICTIVE Maintenance program – Condition Based Monitoring Checked Criteria Line integrity test during warm-up 4-Yr Pressure and vacuum tests Critical instrumentation checks 4-Yr Deviating value Critical valves check 4-Yr Leak tightness 10-Yr Pressure test according to EU Capacity legal pressure check REVENTIVE Maintenance program 2-Yr, 4Yr, 5-Yr Safety valves Safety chain check Yearly 8'000 to 24'000 running hours Vacuum pumps revisions Critical valves check 4-Yr Critical instrumentation check 1 to 4-Yr

Compressor preparation for shipment

> Heat exchanger mechanical cleaning

replacement

Calibration of instrumentation

> Coalescer replacement

Motors reinstallation

Charcoal replacement

Data driven prioritization of maintenance

4'000 Work Orders preventive and corrective 26'000 field working hours

Prioritization of maintenance based on:

- RUN2 maintenance history
- Previous technical stops lesson learned
- Predictive maintenance data
- Operation process data

Table 2. Examples of technical decisions for maintenance during LS2.

Domain	Decision	Result
Instrumentation	Sensor's calibrations reviewed by criticality	20% of 8'669 sensors
Instrumentation	Deployment of instrumentation calibrator	2'000 sensors
X 7	Review of vacuum criticality & accessibility	28% of 566 devices
vacuum	Vacuum gauges check and calibration	45% of 411 devices
	Replacement of coalescing filters reference	32 coal stages
Mechanics	Conditional maintenance for instrumented filters	47% of 262 assets
	Water cooling exchangers analysis and cleaning	40% of assets
Logistics Anticipated shipping of rotary machines		126 assets

RUN3 has now started since beginning 2022

New challenges

- LHC heat load evolution
- CERN commitment for energy preservation
- LHC cryogenics operation in a context of helium shortage

Closing the loop

• Availability preliminary results 2022

LHC heat load evolution

COLD MASS

LHC 36'000 tonnes of cold mass distributed over the 26.7 km underground accelerator

Heat load **at 1.9K and 4.5K +** Thermal Shield **in between 50 and 70K**

BEAM SCREEN

Screen to intercept the beaminduced heat loads inserted into the cold bore

Dynamic Heat load in between 5 and 20K

180 w / half-cell

130 w / half-cell

ELECTRON CLOUD induced heat load

half-cell = LHC cryogenic half-cell of 53 m housing one local beam-screen cooling loop Maximum average value of all half cells measured on one sector

10 w / half-cell

LHC energy preservation configuration for 2022

Cryogenics energy consumption can be optimized depending on required heat load compensation

Electrical power consumption by cryogenics in 2022 - previsions

Run 2022 over 9 months, cryogenics electrical consumption should stay at ~185 GWh instead of 235 GWh in cryo max

LHC energy preservation configuration for 2022

Cryogenics energy consumption can be optimized depending on required heat load compensation

Electrical power consumption by cryogenics in 2022

Feedback on helium management

Surface storage & distribution

- Total inventory at CERN up to 175 tonnes including **130 tonnes minimum for LHC**
- Yearly helium **losses shall be compensated** to ensure continuous operation
- Special attention given to helium management in 2022 in a context of worldwide shortage

Closing the loop, availability preliminary results 2022 Until end of September 2022

Conclusion

- Cryogenics is a critical service system of the LHC Machine
- Systematic analysis of availability measurement during RUN2 gave us vital inputs for the prioritization consolidations and maintenance
- Cryogenics team has implemented an improvement action plan, and performed major consolidations during Long Shutdown 2
- The **operational constraints have significantly increased** for operation of cryogenics during RUN3
- First result show a reduction of the cryogenics unavailability to be confirmed in the coming years

Check out our website & related publications !

CEC 2022, Overview of the maintenance and consolidation activities for CERN cryogenics during LHC Long Shutdown 2, April 2022 ARW 2019, CERN LHC Cryogenics: availability calculation tool improvement and new helium balance monitoring tool development, 2019 CEC 2019, Cryogenic Engineering Conference, Experience from the outsourcing of the Cryogenic Operation & Maintenance at CERN, July 2019, LINK Cryo Ops 2018, General cryogenic maintenance policy and recent update for CERN assets, June 2018, LINK ARW 2017, LHC Cryogenic Infrastructure Reliability, Towards High Availability, October 2017

www.cern.ch

Maintenance and recommissioning of the LHC cryogenic system for the physics Run3

CERN operates and maintains several large cryogenic systems with complex architecture necessary for the operation of the Large Hadron Collider (LHC). Continuous operation of the accelerator during Run2, and the implementation of availability calculation tools as well as the use of a fault tracking system on cryogenics equipment, has allowed the CERN cryogenics team to gain valuable experience and data to drive maintenance and consolidations. Major maintenance tasks and a comprehensive consolidation program have been planned during the Long Shutdown 2 based on a data driven approach. In this talk we will review the methodology, approach and main issues addressed to improve reliability of the cryogenic infrastructure aiming at maintaining the cryogenic system availability for the accelerator complex above 98% for the coming years. We will report on the initial operation results achieved and we will also give some perspective on the new timeline for cryogenics operation during the extensive Run3 including impact of energy preservation scenarios.

