

Digital Twin Application in Accelerators

Accelerator Reliability Workshop '22 – D. SMAKULSKA, S. ATIEH

on behalf of MME DT WG

2022-10-16/21

What is a Digital Twin?

- virtual representation/model of an actual physical asset in operation (any physical asset: a machine, a building, a cat...)
- simulates the physical behavior in a digital context
- mimicking the behavior of a Physical Twin (PT)
- expected to respond to input variables in the same way as it's PT does

What is a Digital Twin?

- Synergy of :
 - models, simulations and empirical formulas
 - historical data
 - live data acquisition and interpretation
- Industry 4.0
- DT can be "twining" the behavior of a component, a system of components or a system of systems

Digital Twin for Mechanical Components

Digital Twin for Mechanical Components - INPUTS

Input and output features of the Digital Twin are always reflecting the characteristics of a specific asset, reflecting the needs of operator/end-user/critical scenarios

there is no "golden rule" of how many inputs and outputs are necessary

Digital Twin- a core

Based on the type and amount of data for a Digital Twin "core", different approaches can be taken:

Machine Learning

- Clear definition of features
- Small dataset when dataset is too big, there is a risk of overfitting the algorithm during the learning process which results in noise in the output data
- Training time is relatively short
- Eg. **ScikitLearn** library for Python

Deep Lerning

- No need of features definition
- **Big** dataset when dataset is small, deep learning algorithms do not perform well
- Training time is relatively long
- Eg. Keras library for Python

Hybrid

- Improving an empirical or semi-empirical models with gathered experimental data
- Obtaining a correction factor for **empirical formula** based
- on collected data
- Empirical formulas corrected with Machine Learning or
 - **Deep Learning**

Digital Twin– Transfer Function – hybrid example

Digital Twin - OUTPUT

Output Data

Fast (quasi real-time) Feedback on the Systems State

Aquisition from ,Virtual Sensors'

What-if Simulations

Fatigue Cycles Counter - evolution

Decision Support

Digital Twin - OUTPUT

Fast (quasi real-time) feedback on the systems state

- A Digital Twin interpretates the output on-line and displays the sytstem/component status
 - Normal Operation
 - Critical State
 - Failure
- Prediction of the near-future parameters values

Aquisition from ,Virtual Sensors'

- Monitoring of parameters without physical sensors installed
- Displaying the parameters difficult to measure ina a conventional way (e.g. temperature distribution of RF Cavity innternal surface)
- Real-time calculation of the non-measurable properties
- Less sensors can be installed in the final application compared to the propotype
- In case of physical sensor failure, the virtual one can replace it

Digital Twin - OUTPUT

What-if simulations

- All what-if scenarios might be checked at any time, with the actual asset initial condition
- New fetures of the system can be implemented and tested before applying them physically in the asset
- Support for the operators in training sessions
- **Decision support** in case of emergency or system's malfunction

Fatigue cycles counter

- Predictive maintenance input
- Adjusting cycles in case of abnormalities
- Real-time wearness of the component (eg. Bellows)
- Correction of the component specification if dependent from loading cycles (eg. Batteries)

Digital Twin is more than Data Acquisition

Digital Twin IS MORE than:

- data acquisition & monitoring
- set of simulations
- experience from historical records

Digital Twin is **DYNAMIC** – it mirrors the exact state of the system is quasi real-time, gives feedback on system current status and predicts the future behavior. It can evolve with asset.

Digital Twin in an Accelerator

- Expensive & bespoke components
 - High complexity
- Hardly accessible for the maintenance
- Failure of a single component is highly critical

A Digital Twin is an answer!

- Tailor-made solution for each component
- Complexity of the system reduced to key physical sensors
 - Improvement of predictive maintenance inputs
 - Operators can be warned and gain time for decision on the actions to be taken

EN-MME Group at CERN

MME Mechanical & Materials Engineering GL: S. Atieh DGL: A. Bertarelli The mandate of the MME group is to provide to the CERN community specific **engineering solutions combining mechanical design, fabrication and material sciences**, using in-house and industry facilities, for accelerator components and physics detectors.

EDM Engineering Design & Measurements O. Capatina EDS Engineering Design & Simulation A. Bertarelli	Design	 Design Office Engineering Unit Mechanical Measurements Laboratory 40+ designers and 15+ engineers
FS Fabrication Methods & Subcontracting A. Dallocchio FW Forming & Welding G. Favre	Fabrication	Mechanical Workshop & Technical Subcontracting unit
MA Machining & Maintenance <i>M. Garlaschè</i> MM Materials, Metrology & Ndt <i>S. Sgobba</i>	Materials	 Material science consultancy Metallurgical analyses, microscopy including FIB, Mechanical tests) NDT: UT, radiography, microtomography Metrology: 350 m² Lab., several CMM

MME Roadmap to DT for Mechanical Components

MME Roadmap to DT for Mechanical Components

(FBG 1576_pm)

1st Step: Proof of Principle (PoP)

- Selection of a **simple component** support of the Crab Cavity Cryomodule - mechanical component
- **Real time** BUT **steady state** conditions ٠ considered (static thermal/mechanical loading)
- **Testing** the DT data flow system ٠
- Real time feedback on component loading ٠ based on reduced sensors scenario - no prediction considered

MME Roadmap to DT for Mechanical Components

1st Step: Proof of Principle (PoP)

- Definition of Load Cases
- Static Load application in pre-defined location with multiple amplitude values
- Collecting DIC image
- Collecting strain gauges measurements
- Simulation of the same Load Cases with FEM
- Creation of the DT Transfer Function
- Test of the model in real time:
 - Input: strain gauge read
 - Output: information of what was the applied force and position

•Digital Twin is an **established solution**, within domains with high-end critical equipment

•Powerful tool for equipment Design, Operation, Safety

•Each Digital Twin is unique, tailored to user's needs and component specification

•Quasi real-time reaction of the system thanks to Machine Learning implementation

•Great application potential for key accelerator components and systems

•CERN MME Group current strategy: step-by-step approach, within mastered competencies

home.cern