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Machine Learning-based Anomaly Detection

e Anomaly detection: is identifying data points that do not fit
normal patterns. (aka outlier detection).

s, Anomaly
e Applications of anomaly detection include: N
o Fault detection in manufacturing. =
o Fraud detection in financial transactions. =
o Health Monitoring. WW
o Transportation, ...etc.
Time i

e Machine Learning have been recently used in several

. . . * Srivignesh R
anomaly detection applications. o

e Why we need Machine Learning?
o Huge amounts of data, i.e: texts, images, videos.
o Datais often unstructured.
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Machine Learning-based Anomaly Detection

e Anomaly detection using ML methods:

o Supervised learning:
m Use a complete set of normal & abnormal labels (i.e. Classification).

o Unsupervised learning:
m Detect anomalies in unlabeled datasets (assumptions: majority of
the instances in the data set will be normal).

o Semi-supervised learning:
m Use a normal, labeled training data set to construct a model
representing normal behavior.
m Then use the model to detect anomalies by testing how likely the
model is o generate any one instance encountered.
m |l.e. Autoencoders (AEs) & Variagtional Autoencoders (VAEs).
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HVCM Anomaly Detection at SNS

e The Spallation Neutron Source (SNS)

facility delivers the most infense neutron R (pscluxlu’er Downtime by System o
beam in the world for scientific materials S : O
research. i)
£
e The SNS consists of 15 High Voltage £ Eaﬁ
Converter Modulators (HVCMs) which are 8 400 .o
used to convert 13.8 kVAC to up to 135kV 3 m‘
pulses at 60 Hz for 1.3 ms. 2
500.0
e The HVCMs occasionally experience L Ii-. 'w“ l'L... I I L1 L T T

—fQ”UfeS which canresulfin a dOy or more Target  HVCM RF  lon SourceE-MagPS Bl  Controls E-other E-chopper Vacuum Cooling  Other
of lost operation time. sk
Figure 1. Spallation neutron source downtime by system from fiscal year (FY) 2007 to 2019.
e The HVCM is the second leading source of
downtime for the SNS after the proton
target system (Fig. 1).

*Courtesy to Chris Pappas, ORNL
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HVCM Anomaly Detection at SNS

e Goal: Predict an upcoming machine failure before it occurs to improve
the reliability of the HYCMs and reduce the down time for SNS facility.

e How: We use pulses leading to failure because we believe there is
a sign about upcoming anomaly event before it happens.

e Pipeline:
o Data Source: Experimental data
o Data Preparation: Extract normal & Abnormal waveforms
o ML Approach: Variational Autoencoder (VAE)
o Training tools: Keras with Tensorflow backend
o Results: Predict anomalies for several fault types
o Model Evaluation: Loss landscape visualization
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What is Autoencoder (AE)

e Autoencoderis a class of machine learning that
can be used to reconstruct data. T — T

o |-I- WwWAas Origino”y implemen-l-ed Qs a non”negr R AL .
dimensionality reduction method (e.g,

reduce images). / \
e Consists of two Neural Networks (NNs): S . S . :

o Encoder: learns how to reduce the input T 3 v [ 7 k> 9 ~
space and compress the input data intfo a = 2 ~ 8 X
lower representation. Input 5 = Compressed 5 A Output

representation Z
o Decoder: Learns how to reconstruct the of the input /

data from the encoded representation to
be close to the original input.

n
1
o Reconstruction Loss: Measures the L<97 gb) — E E [:EZ-—decodem(encodem(:m))]
difference between the input and the i=1
reconstructed.
Y OAK RIDCE | it Jefferdon Lab




What is Variational Autoencoder (VAE)

e AE learns a function to map each input

from the training data to a number and
then learns the reverse mapping.

e VAE learns probability distribution of the

input by estimating a mean and standard
deviation of the that distribution.

e Then, use the estimated parameters (mean

and std) to reconstruct the input data.

e VAE consists of:

o Encoder: outputs parameters of a
pre-defined distribution in the latent space.

o Sampling layer: takes the estimated mean
and std to sample a distribution.

o Decoder: Learns how to reconstruct
the data from the learned distributions.

e The loss function consists of:

_y(,OAK RIDGE

o Kullback-Leibler divergence (prior &
estimated)
o Reconstruction error (input & output)
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Data Preparation

® Normdlfile: we extract all three micro-pulses and
label it as "Normal".

— Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling
rate is 400 ns).

® Abnormal file: we extract the first micro-pulse
(pre-fault) and label it as "Abnormal.

—  Only extract the pre-fault
to allow detecting the anomalies ahead of time.

— Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling
rate is 400 ns).

® We do this for 14 different waveforms:

— Three magnetic fluxes: A-FLUX, B-FLUX, C-FLUX.

—  SixX IGBT current waveforms: A+, A+*, B+, B+*, C+, and C+*.
— Two waveforms that represent the cab bank voltage.

— Two waveforms represent the modulator output voltage.
— One waveform represents the time change (i.e. dV/dt).
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*Courtesy to Majdi Radaideh, ORNL
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Normal Data Descriptions

e We have four main modules: SCL, CCL, DTL, and RFQ
with a total of 7246 waveforms distributed as in Fig. 2
and each module has sub-modules as in Fig 3.

e After data preparation, the waveforms are saved
in a 3D tensor of shape (samples, time, features).
O Samples: depend on the module we choose
o Time: 4500 time-steps of each macro-pulse
O Features: the 14 waveforms saved by the controller

—— Normal

C—-FLUX

A+IGBT -1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s) le-3 Time (s) le—-3

Figure 4. Examples of 4 different waveforms extracted from SCL
module (normalized between 0 and 1).
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CCL

SCL
DTL
RFQ
Figure 2. Number of normal samples
for the 4 main modules
CCL1 SCL21
CCL3 542.0 483.0

401.0 EEN SCL15

408.0
cCcLa 555.0

398.0
SCL14

480.0

DTL3

SCL12
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SCLO1

Figure 3. Number of normal samples
for each sub module
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Figure 8. Grouped Faults
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Figure 5. Percentage of abnormal waveforms of the overall data
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There are several fault types across the
modules and there are more than 40

different types (Fig. 5).
which represents all faults in all modules.

categories to increase the number of
The grouped faults can be seen in Fig. 8,

statistics.

We group fault types into 10 relative

OAK RIDGE
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Abnormal Data Descriptions

o Normal &
abnormal

e Some abnormal waveforms can be identified

. . . . . . Ab I A—FLUX
using clustering or simple visualizations as horma

shown in the box plot in Fig é. waveforms

e However, many other examples fall within the
statistics of normal data and cannot be easily
separated, so we need a more accurate
tool to detect anomalies.

B — FLUX

o ’ ~
- : ;m.‘
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C—-FLUX
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L

0 1000 2000 3000 4000 o0 o° 1o ' 0 = *0 e

Time-step Figure 6. The std distributions of normal & abnormal
Figure 7. Two faulty waveforms. Left can be identified easily, while we need waveforms.
reconstruction error to detect the fault in the right example.

OAK RIDGE | sALLation )
%National Laboratory QSHEEQN J eff-/e?s on La b

o—




Single Module-based VAE

e We adopt the architecture of VAE and use
the methodology on several modules trained
individually.

e Goal: Detect anomalies ahead of time.

e How: Train the using "Single Module-based
VAE" model on normal waveforms, then at
test time we feed abnormal data.

e |If the reconstruction erroris higher than a
threshold value, then we identify the
waveform as abnormal.
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Figure 8. Left is normal waveform; right is abnormal waveform. The yellow
band represents the reconstruction error from our model.

?_n\‘j

Jefferso

n Lab



Single Module-based VAE Architecture

qs(z|x) po(z|2)

Input (#samples, 4500, 14) / \ Reconstruction (#samples, 4500, 14)
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Encoder Architecture

e Encoder consists of three 1IDCNN \
blocks: ConvIiD, BN, 1D pooling. I
e FEach block is activated by a rectified SO A A —u
linear unit (ReLU). - Z ,
&) Y Sampling
e The output of the CNN blocks is waveform - - — - 1%
flattened and passed to a fully -
connected layer (Dense). — N
| | . (1)
e The Dense layer will generate the UL
mean and std of the posterior
Gaussian distribution.
e The sampling layer is the final layer of
the encoder that is passed to the
decoder. ConvlD MaxPooling1D UpSampling1D
Batch Normalization Dense Flatten
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Decoder Architecture

e Decoder takesz as aninput and is Bimim
passed to Dense layers. —— —
e The output of the Dense layers is —~ = o ) - -
reshaped to be fed to the CNN layer. ol | © D )
[a'4 (0’4 (0’4 (2’4
e FEach CNN block consists of: Z | _' T T \r/fg\?en]f;rrfsed
UpSampling, BN, Conv1D followed by
a RelLU activation function. -
e The output of the last CNN block is the JUU
reconstructed inputs. o
e The choice of hyper parameters will
be discussed later!
ConvlD MaxPooling1 D UpSampling1 D
Batch Normalization Dense Flatten
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What is 1D Convolutional Neural Network (1DCNN])

e |[fis alayer consists of
convolutional operations Input data o 1 2 |3 4 5 6 0
using filers/kernels.

0*2 + 12 + 2*2

e Filters are initialized randomly and
updated for each iterafion. Filter/Kernel 5 o 9

e Filter size and the stride (shift) are /

hyper-parameters that often require

domain knowledge.

e Afterinitializing the filters, we perform dot Output 6
product with the input vector.

e Then move by the stride value and do
the conventional operations.

| JefferSon Lab
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What is 1D Convolutional Neural Network (1DCNN])

e |[fis alayer consists of
convolutional operations Input data o 1 2 3 4 5 6 0
using filers/kernels.

e Filters are initialized randomly and
updated for each iteration. Filter/Kernel 2 | 2 | 2

e Filter size and the stride (shift) are
hyper-parameters that often require
domain knowledge.

e Afterinitializing the filters, we perform dot Output 6 |12 | 18] 24 ]30]2

product with the input vector. @ @ @

e Then move by the stride value and do

the conventional operations. 1D maxpool, pool = 2 12 24 30

Jhe JefferSon Lab
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Single Module-based Results

SCL5

—— original
—— reconstructed

® Training: We frain the model on SCL5 module with
80% as training and leave 20% as a test set. T

Original Versus Reconstructed

o ¢
®

® Testing: We test the model accuracy to reconstruct

normal waveforms, and how the reconstruction
error vary between normal and abnormal data.

Reconstructed

e v
o N » o

0.0 0.2 0.4 0.6 0.8 1.0
Original
08 Figure 8. Reconstruction of normal data (test set).
> 0.6
3
"',' 0.4 4
< =3 Normal =3 Normal
0.2 H
71 DV/DT Fault 3 ] Misc Fault
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.175 3 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.175 3 >
0.7 - e E 5
0.6 m,/\/M &
§ 0.5 1
T 04 ‘
£ 03 — .Input i ; 0 - w a * :
— R tructi = . = : - . _ - _ _
0.2 st 103 102 10-1 10-¢ 10~ 102 107! 10°
0.1 - mean Squared Error Magnitude
135 140 145 150 155 160 165 170 135 140 145 150 155 160 165 170 mean Squared Error Magnitude
Time (s) le-3 Time (s) le-3 . . .
Figure 10. Reconstruction of two abnormal waveforms. Figure 9. Density plot when reconsiructing normal

And abnormal waveforms for two fault types.
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Extension 1o Multi Module-based

as(2z|x) po(x|2)
e Instead of fraining the model on all 15 / \ reconstructed
modules individually, we extend our wavetorm | 5 mE S | waveform VAE
methodology to multiple modules. § Sampling S
x > 8 > > Z O T oy
e We use one framework to train all 15 &3 = 24
modules together.
o Increase the number of stafistics. \ |0 /
o Improve the generalization of the

model.

e We are motivated by the idea of
Conditional Variational Autoencoder
(CVAE) qs(z|x, ©) po(x,clz)

N
waveform
—— CVAE
— |

o Condition the model on labels to
associate each file with its label / \ reconstructed
o This will associate each waveform o —u ] =
with its module. waveform | @ .S
S Sampling &
> Q > > O ]
e |t can learn several normal waveforms X Lﬁ Z -
across all modules which increases the |
sensitivity of detecting anomalies. module id/\ o — /
C

AK RIDGE | spALLATioN B
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Multl Module-based VAE Results

® Training: We train the model on all 15 modules
A-FLUX MOD -V

module with 80% as training and leave 20% as a fest set.
1.2 = Normal = Normal
. == DV/DT fault Ls == DV/DT fault
® Testing: We test the model accuracy to reconstruct > g .-
inputs as well as the model ability to distinguish between g A 210
normal and abnormal. ® ol | A
‘ | 0.5 AR
® Since the model was frained on 14 waveforms, we also 00 ) / _ G _S— / A
: H H : H 105 10% 1073 1072 107! 100 1076 1075 107* 1073 1072 107! 10° 10!
mves’rlgo’re Wthh WCIVGfOf'm IS more |mpor’ron’r. Mean Squared Error Magnitude Mean Squared Error Magnitude
® We can see in the density plot using Mod-V we have
more separation between normal waveforms and . .
DV/DT fault. e -
v L e e S
2 3 o
® The Receiver Operating Curve (ROC): shows the L S S E & 04 A B B
performance measurement for the classification at JPPY R SR S SN WO R 5 ) PYYC SOV (U W S—_—
various threshold values. ool d i — AUC: 091 ool d i — AUC: 096
00 02 04 i 06 08 10 00 02 04 ) 06 08 10
® The Area Under the ROC (AUC): measures the entire False Positive Rate False Positive Rate
area and shows the degree of separability, where 1 is Figure 11. Density plot when reconstructing normal
the ideal case. And abnormal waveforms for two fault types.
SPALLATION
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Single Module vs Multi Module Comparison

Single— Module (Reconstructlon Error) Multi—Module (Reconstruction Error)

E%éééééééééééé%%

ﬁ%éééé+++++;4%%%
Gadiiiaiid i lid
it et okt ::i%i-éi.i-éé.géééé;%%

T = e e AR s AL+
L LT L L e SN NN
gkt i

A+IGBT-I
A+IGBT-I

L

A-FLUX
A-FLUX

JI*

MOD-V
MOD-V

MOD-I
MOD-I

CB-I
CB-I

ST AT S

10-% : g - - v T T T 10 < + - r - : v r T
SCLO1 SCLO5 SCL0O9 SCL12 SCL14 SCL15 SCL18 SCL21 RFQ DTL3 DTL5 CCL1 CCL2 CCL3 CCL4 SCLO1 SCLO5 SCLO9 SCL12 SCL14 SCL15 SCL18 SCL21 RFQ DTL3 DTL5 CCL1 CCL2 CCL3 CCL4

DV/DT
DV/DT

Figure 12. Box plot shows the reconstruction error when feeding normal waveforms for single module
vs multi modules. We can see Multi-Module have overall lower reconstruction error for all scenarios.
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Qutline

« Machine Learning-based Anomaly Detection
« HVCM Anomaly Detection at SNS

— Infroduction
— Autoencoder & Variational Autoencoder
- Data preparation
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— Loss Landscape visualization
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Model Evaluation

® The performance of NNs can be impacted by several factors, such

as variable initialization, optimizers, network architectures, batch
sizes, and other hyper-parameters.

— train
validation

0.10

® Studying the effects of various hyper-parameters is challenging
because their loss values live in a high-dimensional space.

® Several scientific applications rely on a simple (1D line) loss curve | %M

which is computing the mean/sum of the loss for each epoch ° ’ ? kpocn v
which produces a scalar, and then plot the loss values as a function Figure 13. Loss values of VAE frained on CCL module

of epochs as shown in Fig. 13 and 14.

loss

—— train
—— validation

®  While this method is beneficial to give an overview of the model
performance, it only shows a small range of gradients of the
parameters, and it does not show the convexity of the function, 8
and why certain NNs architectures generalize better than others.

® Visualizing the loss surface has been used recently which can give | | " Epoch

us a better understanding of the NNs training behavior and can Figure 14. Loss values of VAE trained on all modules
explain the model generalization.
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Neural Network Loss Function

e NN can be thought of as a function that maps input x to

the output y. f(ilf, UJ) — y

e This function has a set of parameters “weights”
o In many deep learning applications, there are
millions or billions of parameters.

input weights

%OAK RIDGE | §kanon
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Neural Network Loss Function

e NN can be thought of as a function that maps input x to

the output y. f(il?, UJ) — y

e This function has a set of parameters “weights”
o In many deep learning applications, there are
millions or billions of parameters.

input weights
e We train the NN by minimizing a loss function that

enalizes the difference between f(x) and v.
P Ik andy L(w) mmE N (s w) — il
FOAK RIDGE |tisoi™ Jefferdon Lab




Neural Network Loss Function

NN can be thought of as a function that maps input x to
the output y.

This function has a set of parameters “weights”
o In many deep learning applications, there are
millions or billions of parameters.

We train the NN by minimizing a loss function that
penalizes the difference between f(x) and y. L(

The loss function is a function of the weight parameters
so it has a very high dimensionality.

In this example, if fis linear, we expect it will be a convex
function;

% OAK RIDGE | e
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input weights

mmz | f(x;; w

y@“
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Neural Network Loss Function

_y(,OAK RIDGE
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NN can be thought of as a function that maps input x to
the output y.

This function has a set of parameters “weights”
o In many deep learning applications, there are
millions or billions of parameters.

We train the NN by minimizing a loss function that
penalizes the difference between f(x) and y. L(

The loss function is a function of the weight parameters,
so it has a very high dimensionality.

In this example, if fis linear, we expect it will be a convex
function;

However, NNs have nonlinearities on top of

nonlinearities, so this might be a very non-convex
function. (How convex?)

SPALLATION
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input weights
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Loss Landscape Visualization

%OAK RIDGE

National Laboratory

The loss landscape can show the
convexity/non-convexity of the tfrained models.

Visualizing the loss landscape can explain why
certain choice of NNs architectures are easier to
train than others. (i.e. skip connections).

It can also help in testing the stability and
generalization of the trained models.

In this work, we visualize the loss landscape of our
VAE models using Filter Normalization technique
and use couture plofs.

We are interested to see the model behavior for
the following scenarios:

O Deep layers V.S. shallow layers
O Single Module V.S. Multi Module

SPALLATION
NEUTRON

SOURCE

*Hao Li, and et al, Visualizing the Loss Landscape of Neural
Nets. NIPS, 2019.
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Loss Landscape Visualization

® Several methods were proposed to reduce the loss surface into
lower dimensional space.

o Filter Normalization, developed in 2019 by Hao Li and his
colleagues.

® Filter normalization steps: 1«

0 Chose a center point © which represent all
the trained weights of our NN. n

o Choose two random directions in weights space  and .
o Normalize these two random vectors to have the same

norm as the CNN filters. f<&7 5> — L<9* + &5 + 577) Visual representation of 2D plane grid with two
o Plot 2D surface of the form: random directions.
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Loss Landscape: Visualization

e In this example, we train 6 VAE models
using different number of CNN layers (L): %
o L=3,5, 10, 20, 30, and 40. 0.5-

0.0+ (&

e We can see the transition from smooth loss
surface to chaotic behavior as the number 51\
of layers increased. Lok

1.0

e We know in theory deep layers suffer from
many problems if no special techniques 05/
implemented, now we cansee if visually. |

e The results give us a hint to fine-tune the —os{ I
model and select the appropriate number

of layers and other hyper-parameters. "o o8 00 ¢ o 05 10 -l0 -05 00 05 Lo

Figure 11. 2D visualization of the loss surface of the Single Module-based
frained using different number of Conv 1D layers, where L is the number of
layers in the encoder and decoder.

AK RIDGE SPALLATION —
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Loss Landscape: Visualization

_y(,OAK RIDGE

National Laboratory

In this example, we train Single
Module-based VAE and Multi Module-based
VAE.

Single Module was trained on CCL2, and
Multi Module was frained on all 15 modules.

We train both models with the same number
of layers and parameters, and
random initializations.

We can see using the Multi Module-based
VAE, we have smother function than the
Single Module-based VAE.

Single Module was also trained on several
other modules, we see different behavior
where some modules do have smooth loss
landscapes.
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Single Module-based VAE

100
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Thank you!
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HVCM Anomaly Detection at SNS

e The High Voltage Converter Modulators (HVCMs) convert 13.8 kVAC to ~135 kV, 1.35 ms pulses at
60 Hz to the cathodes of klystrons used to accelerate beam at SNS.

e They consist of five major subassemblies:
o AC switch gear magnetics.

o A phased conftrolled rectifier assembly.
o An airinsulated HV enclosure for energy storage capacitors and IGBT switch assemblies
o An oil insulated HV tank for the high voltage (>2 kV) components
o A PXlbased controller
AC magnetics Rectifier HV enclosure Confrols
HQaK RIDCE |l “courtesyfo Chris Pappas Jefferdon Lab
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Faulty waveforms feature map (MEAN)

Normal waveforms feature map (MEAN)
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Data Preparation

® Normdal file: we extract all three micro-pulses and
label it as "Normal'.

Extract Pre-fault
— Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling /

rate is 400 ns).
Fault Post-fault

® Abnormdlfile: we extract the first micro-pulse ) /
(pre-fault) and label it as "Abnormal”.

o

— Only extract the pre-fault to allow detecting the anomalies
ahead of time.

-10

A-FLUX

— Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling
rate is 400 ns). 0

® We do this for 14 different waveforms: i
. Time step
— Three magnetic fluxes: A-FLUX, B-FLUX, C-FLUX
— Six IGBT current waveforms: A+, A+*, B+, B+*, C+, and C+*
— Two waveforms that represent the cab bank voltage

%OAK RTDG]-I AR Weveforms represent the modulator output voltage
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Background: High Voltage Converter Modulators
Operation

e AC isfiltered and transformed to 2.1 kVAC, then converted to DC by a six pulse controlled rectifier.

e DC s filtered by capacitors C1, C2 used to store energy for the HV pulses. The DC is chopped by three IGBT based
H-bridges Qa1-Qc4 switching at 20 kHz nominal.

e The 20 kHz pulses are stepped-up to high voltage and filtered by the transformers Xa-Xc and Ca-Cc.

e High voltage pulses are combined in parallel and full wave rectified by Dal-Da2. The resulting 120 Hz pulses are
further filtered and feed to the cathode of the klystrons.

@Qﬂ @QLa
ﬁigg = ~130 kV
'/ 1.3 ms pulses

Enclosure %Qaz @QaﬁA :
Phase A ; ; T K1

5

HV

Dal |Dbil
@le @Q:s

. 3 oo
Recitfier XB ] Da2 |Db2|Dc2 K2 KN
Qb2 @Q =

2l
b4 -
TT
AC 13.8 VAC Phase B 1 e

Magnetics kVAC Rec. | ci—— @ Qc1l @ Qe3 Klystrons
o : : (N
e T * = P EC

| Qc2 XC

T2 ! C2,.r C @ Qc4a HV Tank
Phase C
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Abnormal Data Descriptions

We also extract the waveforms occur before the
fault happens (abnormal data).

Fault Types

There are several fault types across the modules
which can be shown in Fig. 6.

Similar to the normal data, we also extract 4500
timestep and 14 waveforms.

We group fault types into 10 relative categories
to increase the number of statistics.

Group faults
Figure 6. Fault types for different modules into 10
categories
The grouped faults can be seen in Fig. 7, which
represents all faults in all modules. aso
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Figure 7. Grouped faults
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