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Machine Learning-based Anomaly Detection

● Anomaly detection: is identifying data points that do not fit 
normal patterns. (aka outlier detection).

● Applications of anomaly detection include:
○ Fault detection in manufacturing.
○ Fraud detection in financial transactions.
○ Health Monitoring.
○ Transportation, ...etc.

● Machine Learning have been recently used in several 
anomaly detection applications.

● Why we need Machine Learning?
○ Huge amounts of data, i.e: texts, images, videos.
○ Data is often unstructured.

* Srivignesh R
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Machine Learning-based Anomaly Detection

● Anomaly detection using ML methods:

○ Supervised learning:
■ Use a complete set of normal & abnormal labels (i.e. Classification).

○ Unsupervised learning:
■ Detect anomalies in unlabeled datasets (assumptions: majority of 

the instances in the data set will be normal).

○ Semi-supervised learning:
■ Use a normal, labeled training data set to construct a model 

representing normal behavior.
■ Then use the model to detect anomalies by testing how likely the 

model is to generate any one instance encountered.
■ I.e.  Autoencoders (AEs) & Variational Autoencoders (VAEs).
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HVCM Anomaly Detection at SNS

● The Spallation Neutron Source (SNS) 
facility delivers the most intense neutron 
beam in the world for scientific materials 
research.

● The SNS consists of 15 High Voltage 
Converter Modulators (HVCMs) which are 
used to convert 13.8 kVAC to up to 135 kV 
pulses at 60 Hz for 1.3 ms.

● The HVCMs occasionally experience 
failures which can result in a day or more 
of lost operation time.

● The HVCM is the second leading source of 
downtime for the SNS after the proton 
target system (Fig. 1).

Figure 1. Spallation neutron source downtime by system from fiscal year (FY) 2007 to 2019.

*Courtesy to Chris Pappas, ORNL
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HVCM Anomaly Detection at SNS

● Goal: Predict an upcoming machine failure before it occurs to improve 
the reliability of the HVCMs and reduce the down time for SNS facility. 

● How: We use pulses leading to failure because we believe there is 
a sign about upcoming anomaly event before it happens.  

● Pipeline:
o Data Source: Experimental data

o Data Preparation: Extract normal & Abnormal waveforms 

o ML Approach: Variational Autoencoder (VAE)

o Training tools: Keras with Tensorflow backend

o Results: Predict anomalies for several fault types

o Model Evaluation: Loss landscape visualization
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What is Autoencoder (AE)

● Autoencoder is a class of machine learning that 
can be used to reconstruct data.
○ It was originally implemented as a nonlinear 

dimensionality reduction method (e.g, 
reduce images).

● Consists of two Neural Networks (NNs):
○ Encoder: learns how to reduce the input 

space and compress the input data into a 
lower representation.

○ Decoder: Learns how to reconstruct the 
data from the encoded representation to 
be close to the original input. 

○ Reconstruction Loss: Measures the 
difference between the input and the 
reconstructed. 
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What is Variational Autoencoder (VAE)

● AE learns a function to map each input 
from the training data to a number and 
then learns the reverse mapping.

● VAE learns probability distribution of the 
input by estimating a mean and standard 
deviation of the that distribution.

● Then, use the estimated parameters (mean 
and std) to reconstruct the input data.

● VAE consists of:
o Encoder: outputs parameters of a 

pre-defined distribution in the latent space.
o Sampling layer: takes the estimated mean 

and std to sample a distribution.
o Decoder: Learns how to reconstruct 

the data from the learned distributions.
● The loss function consists of: 

o Kullback–Leibler divergence (prior & 
estimated)

o Reconstruction error (input & output)
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Data Preparation 

• Normal file: we extract all three micro-pulses and 
label it as "Normal". 

– Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling 
rate is 400 ns).

• Abnormal file: we extract the first micro-pulse 
(pre-fault) and label it as "Abnormal".

– Only extract the pre-fault 
to allow detecting the anomalies ahead of time.

– Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling 
rate is 400 ns).

• We do this for 14 different waveforms:
– Three magnetic fluxes: A-FLUX, B-FLUX, C-FLUX.
– Six IGBT current waveforms: A+, A+*, B+, B+*, C+, and C+*.
– Two waveforms that represent the cab bank voltage.
– Two waveforms represent the modulator output voltage.
– One waveform represents the time change (i.e. dV/dt).

Time step

Extract Pre-fault

Extract all pulses

*Courtesy to Majdi Radaideh, ORNL
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Normal Data Descriptions

● We have four main modules: SCL, CCL, DTL, and RFQ 
with a total of 7246 waveforms distributed as in Fig. 2 
and each module has sub-modules as in Fig 3.

● After data preparation, the waveforms are saved 
in a 3D tensor of shape (samples, time, features). 
o Samples: depend on the module we choose
o Time: 4500 time-steps of each macro-pulse
o Features: the 14 waveforms saved by the controller

Figure 2. Number of normal samples 
for the 4 main modules

Figure 3. Number of normal samples 
for each sub module

Figure 4. Examples of 4 different waveforms extracted from SCL 
module (normalized between 0 and 1).
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Abnormal Data Descriptions

● There are several fault types across the 
modules and there are more than 40 
different types (Fig. 5).

● We group fault types into 10 relative 
categories to increase the number of 
statistics.

● The grouped faults can be seen in Fig. 8, 
which represents all faults in all modules.

Figure 5. Percentage of abnormal waveforms of the overall data

Figure 8. Grouped Faults
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Abnormal Data Descriptions

● Some abnormal waveforms can be identified 
using clustering or simple visualizations as 
shown in the box plot in Fig 6.

● However, many other examples fall within the 
statistics of normal data and cannot be easily 
separated, so we need a more accurate 
tool to detect anomalies.

Figure 6. The std distributions of normal & abnormal 
waveforms.

Abnormal
waveforms

Figure 7. Two faulty waveforms. Left can be identified easily, while we need 
reconstruction error to detect the fault in the right example. 

Normal & 
abnormal

Time-step
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Single Module-based VAE

● We adopt the architecture of VAE and use 
the methodology on several modules trained 
individually.

● Goal: Detect anomalies ahead of time.

● How: Train the using "Single Module-based 
VAE" model on normal waveforms, then at 
test time we feed abnormal data.

● If the reconstruction error is higher than a 
threshold value, then we identify the 
waveform as abnormal. 

  Normal   Abnormal

Figure 8. Left is normal waveform; right is abnormal waveform. The yellow 
band represents the reconstruction error from our model.
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Single Module-based VAE Architecture
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Encoder Architecture 

● Encoder consists of three 1DCNN 
blocks: Conv1D, BN, 1D pooling.

● Each block is activated by a rectified 
linear unit (ReLU).

● The output of the CNN blocks is 
flattened and passed to a fully 
connected layer (Dense).

● The Dense layer will generate the 
mean and std of the posterior 
Gaussian distribution. 

● The sampling layer is the final layer of 
the encoder that is passed to the 
decoder. Conv1D

Batch Normalization

MaxPooling1D

Dense

UpSampling1D

Flatten

Re
LU
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LU
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Decoder Architecture 

● Decoder takes z as an input and is 
passed to Dense layers.

● The output of the Dense layers is 
reshaped to be fed to the CNN layer.

● Each CNN block consists of: 
UpSampling, BN, Conv1D followed by 
a ReLU activation function.

● The output of the last CNN block is the 
reconstructed inputs.

● The choice of hyper parameters will 
be discussed later!

Conv1D

Batch Normalization

MaxPooling1D

Dense

UpSampling1D

Flatten

Re
LU

Re
LU

Re
LU

Re
LU

 𝐙 reconstructed 
waveform
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What is 1D Convolutional Neural Network (1DCNN)

● It is a layer consists of 
convolutional operations 
using filers/kernels. 

● Filters are initialized randomly and 
updated for each iteration.

● Filter size and the stride (shift) are 
hyper-parameters that often require 
domain knowledge. 

● After initializing the filters, we perform dot 
product with the input vector.

● Then move by the stride value and do 
the conventional operations.

0 1 2 3 4 5 6 0

2 2 2

Input data

Filter/Kernel

Output

0*2 + 1*2 + 2*2

6
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What is 1D Convolutional Neural Network (1DCNN)

● It is a layer consists of 
convolutional operations 
using filers/kernels. 

● Filters are initialized randomly and 
updated for each iteration.

● Filter size and the stride (shift) are 
hyper-parameters that often require 
domain knowledge. 

● After initializing the filters, we perform dot 
product with the input vector.

● Then move by the stride value and do 
the conventional operations.

0 1 2 3 4 5 6 0

2 2 2

Input data

Filter/Kernel

Output

1*2 + 2*2 + 3*2

66 12
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What is 1D Convolutional Neural Network (1DCNN)

● It is a layer consists of 
convolutional operations 
using filers/kernels. 

● Filters are initialized randomly and 
updated for each iteration.

● Filter size and the stride (shift) are 
hyper-parameters that often require 
domain knowledge. 

● After initializing the filters, we perform dot 
product with the input vector.

● Then move by the stride value and do 
the conventional operations.

0 1 2 3 4 5 6 0

2 2 2

Input data

Filter/Kernel

Output 66 126 12 18 24 30 22
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What is 1D Convolutional Neural Network (1DCNN)

● It is a layer consists of 
convolutional operations 
using filers/kernels. 

● Filters are initialized randomly and 
updated for each iteration.

● Filter size and the stride (shift) are 
hyper-parameters that often require 
domain knowledge. 

● After initializing the filters, we perform dot 
product with the input vector.

● Then move by the stride value and do 
the conventional operations.

0 1 2 3 4 5 6 0

2 2 2

Input data

Filter/Kernel

Output 66 126 12 18 24 30 22

1D maxpool, pool = 2 12 24 30
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Single Module-based Results

● Training: We train the model on SCL5 module with 
80% as training and leave 20% as a test set.

● Testing: We test the model accuracy to reconstruct 
normal waveforms, and how the reconstruction 
error vary between normal and abnormal data.

Figure 8. Reconstruction of normal data (test set).

Figure 9. Density plot when reconstructing normal 
And abnormal waveforms for two fault types.

Figure 10. Reconstruction of two abnormal waveforms.

A
-F

LU
X



23  

Extension to Multi Module-based
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● Instead of training the model on all 15 
modules individually, we extend our 
methodology to multiple modules.

● We use one framework to train all 15 
modules together.

○ Increase the number of statistics.
○ Improve the generalization of the 

model.

● We are motivated by the idea of 
Conditional Variational Autoencoder 
(CVAE)

○ Condition the model on labels to 
associate each file with its label

○ This will associate each waveform 
with its module.

● It can learn several normal waveforms 
across all modules which increases the 
sensitivity of detecting anomalies.
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Multi Module-based VAE Results

● Training: We train the model on all 15 modules 
module with 80% as training and leave 20% as a test set.

● Testing: We test the model accuracy to reconstruct 
inputs as well as the model ability to distinguish between 
normal and abnormal.

● Since the model was trained on 14 waveforms, we also 
investigate which waveform is more important.

● We can see in the density plot using Mod-V we have 
more separation between normal waveforms and 
DV/DT fault. 

● The Receiver Operating Curve (ROC): shows the 
performance measurement for the classification at 
various threshold values.

● The Area Under the ROC (AUC): measures the entire 
area and shows the degree of separability, where 1 is 
the ideal case.

Figure 11. Density plot when reconstructing normal 
And abnormal waveforms for two fault types.
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Single Module vs Multi Module Comparison

Figure 12. Box plot shows the reconstruction error when feeding normal waveforms for single module 
vs multi modules. We can see Multi-Module have overall lower reconstruction error for all scenarios.
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Model Evaluation

• The performance of NNs can be impacted by several factors, such 
as variable initialization, optimizers, network architectures, batch 
sizes, and other hyper-parameters.

• Studying the effects of various hyper-parameters is challenging 
because their loss values live in a high-dimensional space.

• Several scientific applications rely on a simple (1D line) loss curve 
which is computing the mean/sum of the loss for each epoch 
which produces a scalar, and then plot the loss values as a function 
of epochs as shown in Fig. 13 and 14.

• While this method is beneficial to give an overview of the model 
performance, it only shows a small range of gradients of the 
parameters, and it does not show the convexity of the function, 
and why certain NNs architectures generalize better than others. 

• Visualizing the loss surface has been used recently which can give 
us a better understanding of the NNs training behavior and can 
explain the model generalization.

Figure 13. Loss values of VAE trained on CCL module

Figure 14. Loss values of VAE trained on all modules
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Neural Network Loss Function

● NN can be thought of as a function that maps input x to 
the output y.

● This function has a set of parameters “weights”
○ In many deep learning applications, there are 

millions or billions of parameters. input weights
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Neural Network Loss Function

● NN can be thought of as a function that maps input x to 
the output y.

● This function has a set of parameters “weights”
○ In many deep learning applications, there are 

millions or billions of parameters.

● We train the NN by minimizing a loss function that 
penalizes the difference between f(x) and y.

input weights
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Neural Network Loss Function

● NN can be thought of as a function that maps input x to 
the output y.

● This function has a set of parameters “weights”
○ In many deep learning applications, there are 

millions or billions of parameters.

● We train the NN by minimizing a loss function that 
penalizes the difference between f(x) and y.

● The loss function is a function of the weight parameters 
so it has a very high dimensionality.

● In this example, if 𝑓 is linear, we expect it will be a convex 
function; 

input weights
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Neural Network Loss Function

● NN can be thought of as a function that maps input x to 
the output y.

● This function has a set of parameters “weights”
○ In many deep learning applications, there are 

millions or billions of parameters.

● We train the NN by minimizing a loss function that 
penalizes the difference between f(x) and y.

● The loss function is a function of the weight parameters, 
so it has a very high dimensionality.

● In this example, if 𝑓 is linear, we expect it will be a convex 
function; 

● However, NNs have nonlinearities on top of 
nonlinearities, so this might be a very non-convex 
function. (How convex?)

input weights
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Loss Landscape Visualization

● The loss landscape can show the 
convexity/non-convexity of the trained models.  

● Visualizing the loss landscape can explain why 
certain choice of NNs architectures are easier to 
train than others. (i.e. skip connections).

● It can also help in testing the stability and 
generalization of the trained models. 

● In this work, we visualize the loss landscape of our 
VAE models using Filter Normalization technique 
and use couture plots.

● We are interested to see the model behavior for 
the following scenarios:
○ Deep layers V.S. shallow layers
○ Single Module V.S. Multi Module

*Hao Li, and et al, Visualizing the Loss Landscape of Neural 
Nets. NIPS, 2019.
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Loss Landscape Visualization

● Several methods were proposed to reduce the loss surface into 
lower dimensional space.
○ Filter Normalization, developed in 2019 by Hao Li and his 

colleagues.

● Filter normalization steps:
○ Chose a center point      which represent all 

the trained weights of our NN.
○ Choose two random directions in weights space    and    .
○ Normalize these two random vectors to have the same 

norm as the CNN filters.
○ Plot 2D surface of the form: 

Visual representation of 2D plane grid with two 
random directions.
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Loss Landscape: Visualization

● In this example, we train 6 VAE models 
using different number of CNN layers (L):

○ L = 3, 5, 10, 20, 30, and 40.

● We can see the transition from smooth loss 
surface to chaotic behavior as the number 
of layers increased.

● We know in theory deep layers suffer from 
many problems if no special techniques 
implemented, now we can see it visually.

● The results give us a hint to fine-tune the 
model and select the appropriate number 
of layers and other hyper-parameters.

Figure 11. 2D visualization of the loss surface of the Single Module-based 
trained using different number of Conv1D layers, where L is the number of 
layers in the encoder and decoder.
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Loss Landscape: Visualization
● In this example, we train Single 

Module-based VAE and Multi Module-based 
VAE.

● Single Module was trained on CCL2, and 
Multi Module was trained on all 15 modules. 

● We train both models with the same number 
of layers and parameters, and 
random initializations.

● We can see using the Multi Module-based 
VAE, we have smother function than the 
Single Module-based VAE.

● Single Module was also trained on several 
other modules, we see different behavior 
where some modules do have smooth loss 
landscapes. 

Single Module-based VAE Multi Module-based VAE
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HVCM Anomaly Detection at SNS

● The High Voltage Converter Modulators (HVCMs) convert 13.8 kVAC to ~135 kV, 1.35 ms pulses at 
60 Hz to the cathodes of klystrons used to accelerate beam at SNS.

● They consist of five major subassemblies:
○ AC switch gear magnetics.
○ A phased controlled rectifier assembly.
○ An air insulated HV enclosure for energy storage capacitors and IGBT switch assemblies
○ An oil insulated HV tank for the high voltage (>2 kV) components
○ A PXI based controller

        AC magnetics                                   Rectifier                                     HV enclosure                         Controls

*Courtesy to Chris Pappas
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Data Preparation 

• Normal file: we extract all three micro-pulses and 
label it as "Normal". 
– Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling 

rate is 400 ns).

• Abnormal file: we extract the first micro-pulse 
(pre-fault) and label it as "Abnormal".
– Only extract the pre-fault to allow detecting the anomalies 

ahead of time.

– Each 1.8 ms macro-pulse has 4500 time steps (i.e. sampling 
rate is 400 ns).

• We do this for 14 different waveforms:
– Three magnetic fluxes: A-FLUX, B-FLUX, C-FLUX
– Six IGBT current waveforms: A+, A+*, B+, B+*, C+, and C+*
– Two waveforms that represent the cab bank voltage

– Two waveforms represent the modulator output voltage 
and current.

– One waveform represents the time change (i.e. dV/dt).
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Background: High Voltage Converter Modulators 
Operation

● AC is filtered and transformed to 2.1 kVAC, then converted to DC by a six pulse controlled rectifier.
● DC is filtered by capacitors C1, C2 used to store energy for the HV pulses. The DC is chopped by three IGBT based 

H-bridges Qa1-Qc4 switching at 20 kHz nominal.
● The 20 kHz pulses are stepped-up to high voltage and filtered by the transformers Xa-Xc and Ca-Cc.
● High voltage pulses are combined in parallel and full wave rectified by Da1-Da2. The resulting 120 Hz pulses are 

further filtered and feed to the cathode of the klystrons.
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Abnormal Data Descriptions

● We also extract the waveforms occur before the 
fault happens (abnormal data).

● There are several fault types across the modules 
which can be shown in Fig. 6.

● Similar to the normal data, we also extract 4500 
timestep and 14 waveforms. 

● We group fault types into 10 relative categories 
to increase the number of statistics.

● The grouped faults can be seen in Fig. 7, which 
represents all faults in all modules.

          Figure 6. Fault types for different modules

Figure 7. Grouped faults

Group faults 
into 10 
categories


