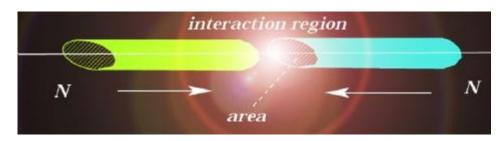
UNIVERSITY of **HOUSTON**

COLLEGE of NATURAL SCIENCES & MATHEMATICS

Luminosity Detector Studies for the EIC

(EIC Early Career Workshop - 2022)

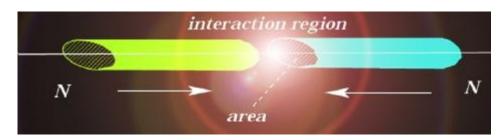

- Introduction
- Possible Designs
- Geant4 Implementation of the design
- Initial Simulation Results

Aranya Giri & Dhevan Gangadharan Prof. Rene Bellwied

07-24-2022

Introduction

- Performance of particle collider : Beam Energy & Luminosity
- Luminosity is the maximum no. of collisions <u>that can be produced</u> in the collider per cm² per sec.



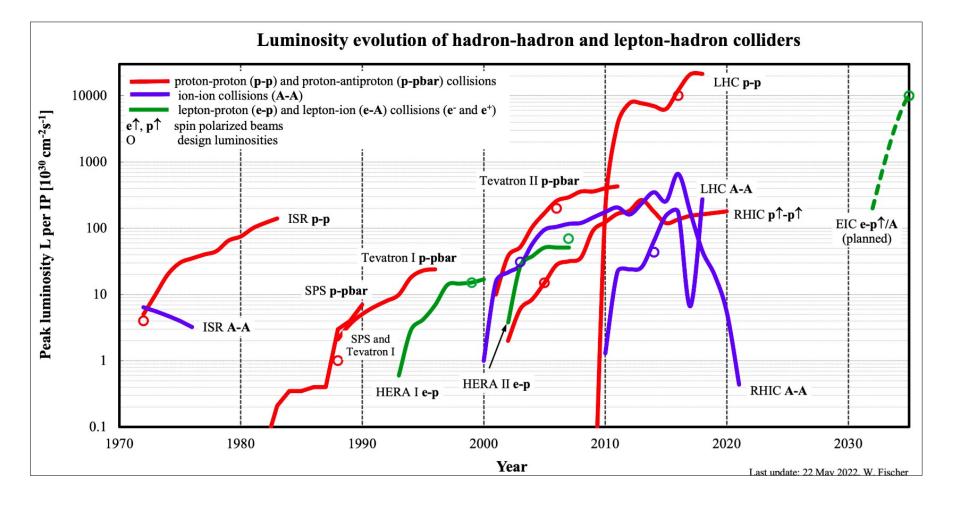
$$L = f N^2 / 4 \pi \sigma^2$$

N ~ # particles in the bunch, f ~ bunch crossing frequency & σ ~ transverse size of bunch

Introduction

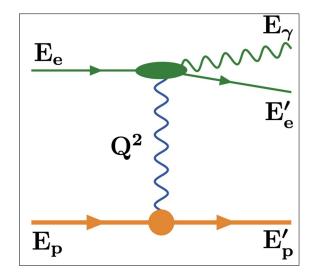
- Performance of particle collider : Beam Energy & Luminosity
- Luminosity is the maximum no. of collisions <u>that can be produced</u> in the collider per cm² per sec.

$$L = f N^2 / 4 \pi \sigma^2$$

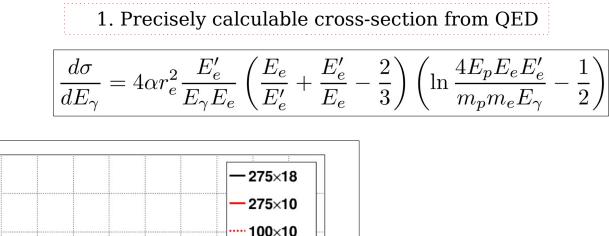

N ~ # particles in the bunch, f ~ bunch crossing frequency & σ ~ transverse size of bunch

• Rate of any event during collision \propto cross-section (σ_p) of the associated process.

$$R = L \sigma_p$$


- Precise measurement of L = Precise measurement of σ_{p}
- At EIC, precision ~ 1% & High Luminosity ~ 10^{33-34} cm⁻² s⁻¹

Introduction


https://www.rhichome.bnl.gov/RHIC/Runs/

- HERA (predecessor of EIC) measured luminosity via bremsstrahlung (BL) radiation.
- Radiation due to elastic scattering of electron near strong electric field (p / Nu).

https://arxiv.org/abs/1009.2451 https://arxiv.org/abs/2106.08993

- HERA (predecessor of EIC) measured luminosity via bremsstrahlung (BL) radiation.
- Radiation due to elastic scattering of electron near strong electric field (p / Nu).

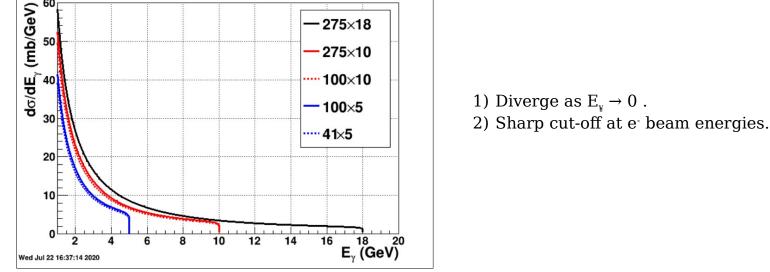


Fig.: Simulated BL photon energy distributions for EIC beam energies (Yellow Report).

https://arxiv.org/abs/1009.2451 https://arxiv.org/abs/2106.08993

- HERA (predecessor of EIC) measured luminosity via bremsstrahlung (BL) radiation.
- Radiation due to elastic scattering of electron near strong electric field (p / Nu).

1. Precisely calculable cross-section from QED

$$\frac{d\sigma}{d\Theta_{\gamma}} \sim \frac{\Theta_{\gamma}}{\left((m_e/E_e)^2 + \Theta_{\gamma}^2\right)^2}.$$

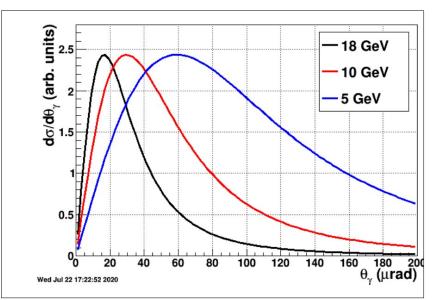


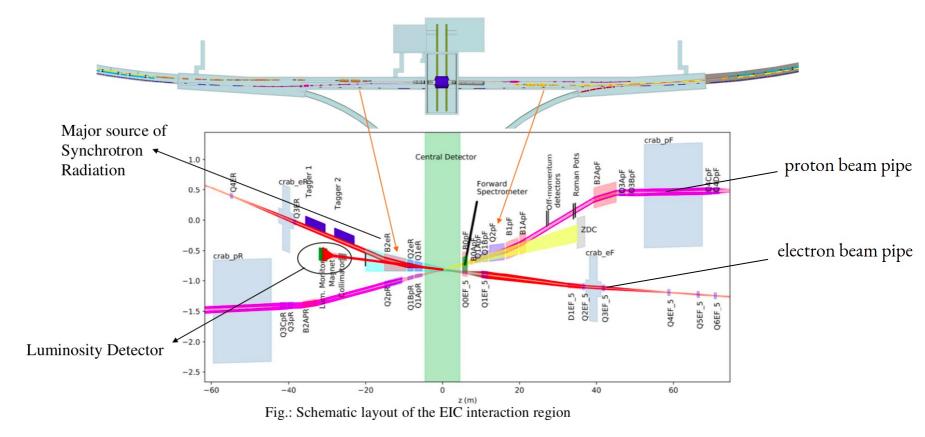
Fig.: Simulated BL photon angular (right) distributions for EIC beam energies (Yellow Report).

1) Strongly peaked at e⁻ beam direction, $\theta_{\mu} \sim m_{e} / E_{e}$ 2) Transverse spread decreases with e⁻ energy.

https://arxiv.org/abs/1009.2451 https://arxiv.org/abs/2106.08993

- HERA (predecessor of EIC) measured luminosity via bremsstrahlung (BL) radiation.
- Radiation due to elastic scattering of electron near strong electric field (p / Nu)

2. High Rate		
E _γ (GeV)	σ _{вн} (mb)	Rate (kHz)
0.1 - 0.9	277.0	4155
9.0 - 17.0	25.0	375
17.0 - 26.6	15.6	234
0.1 - 26.6	317.7	4765.5


Source : ZEUS-HERA luminosity monitor measurements

To measure LUMINOSITY !

$$\mathcal{L}=R^{ep}/\sigma^{obs}_{BH}$$

http://www-library.desy.de/preparch/desy/1992/desy92-066.kek.pdf

Luminosity Dectetor at EIC

Preview of Lumi. Dec. @ HERA

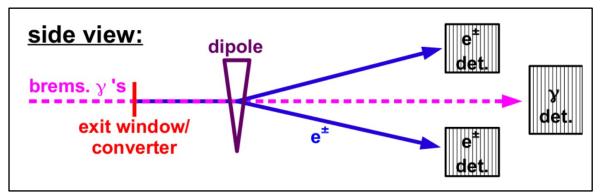
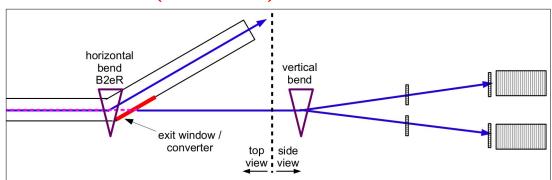


Fig.: Schematic diagram of HERA (ZEUS Exp) luminosity monitor

Two Independent & Complementary Method

Direct PHOT :

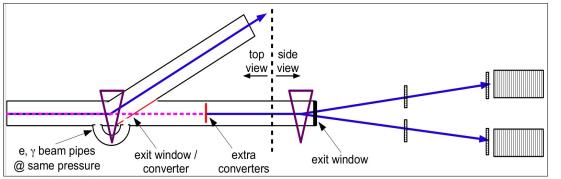

- Sensitive to direct synchrotron radiation
- Pileup, high rate of γ per bunch crossing, 10/23 for 18/10 GeV (350 for Nu)
- Simple Implementation

UP & DOWN :

- Outside the direct synchrotron radiation fan; Natural low E_{γ} cutoff ($\gamma \rightarrow e^-e^+$)
- Deals with pileup, Adjusting the Converter, Dipole |B| & Geometry.
- Complex Implementation

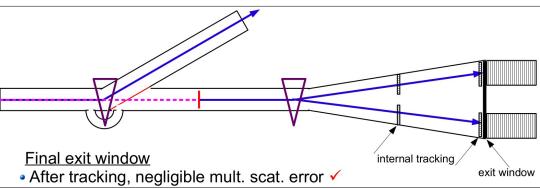
Possible designs for EIC

- → Same as ZEUS-HERA but,
- Two trackers added on e[±] path :-
 - Improve acceptance correction
 - Better resolution for pile-up monitoring


Version 1 (Baseline)

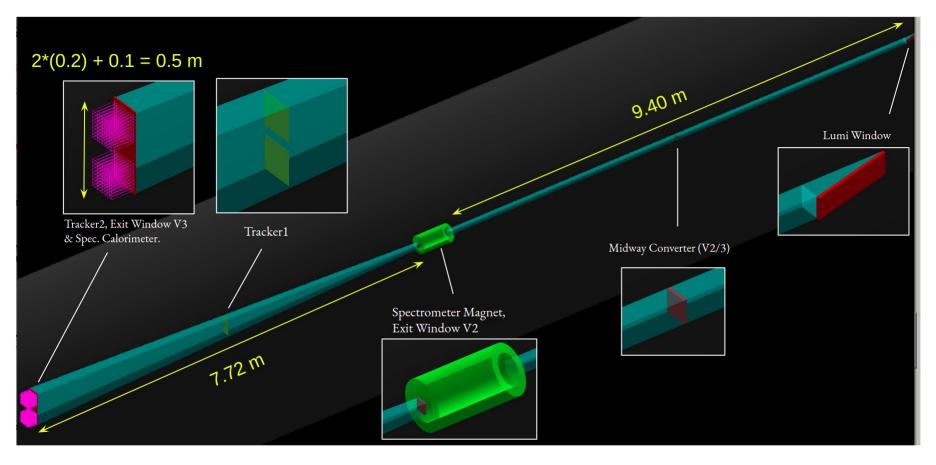
- Thick Aluminium exit window (EW) , no control over conversion rate
- X, e[±] multple scattering after EW, large error on angular position

Designs by W. Schmidke @ Far Backward Meeting on $4\mathchar`-28\mathchar`-2022$


Possible designs for EIC

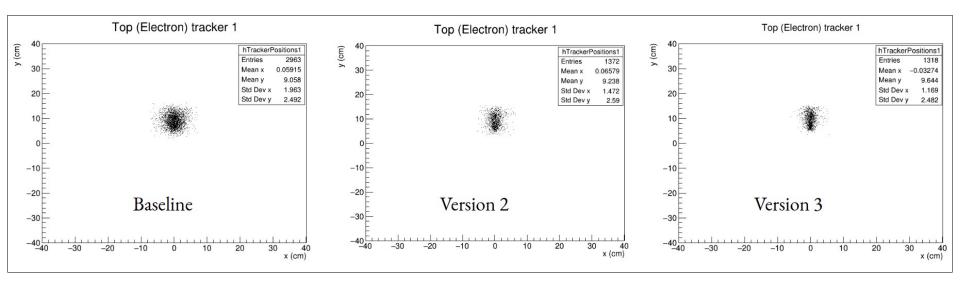
Version 2

- Extra movable converters, control over conversion rate for ep & eA collision
- * Thick EW after dipole, leads to scattering χ , e^{\pm} , error on angular position

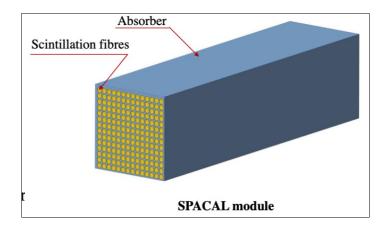

Version 3

- Thick EW between Tracker2 and Calorimeter.
- No Y, e[±] multple scattering

Designs by W. Schmidke @ Far Backward Meeting on 4-28-2022


Geant4 implementation of design

- Design is implemented in fun4all software framework
- A/Version detector materials are changed


Size and calorimeter design by Jaraslav Adam's Code

Initial simulation test

- 5000 events generated
- 5 GeV photon beam without transverse smearing.
- Hit_points considered only when electron crosses top two trackers and its pair produced positron crosses bottom two trackers.
- Clear decrease in spread (along x) of hit points across the version

Initial simulation test

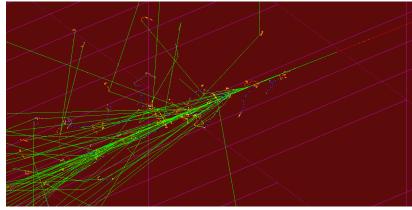
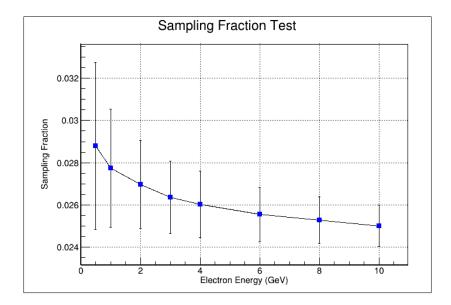



Fig:simulated EM shower in the calorimeter

- UP/DOWN will be Sphagetti Calorimeter $f_{sampling} = E(active) / E (active) + E (absorber)$
- Impact on the energy resolution Rate of decrese $f_{sampling}$ decreses with energy

Summary – Next Steps

- Implementation of a Luminosity detector is now available to all in the Fun4All software framework.
 - Repo dir: eic/fun4all_eicdetectors/simulation/g4simulation/g4lumi
 - Spectrometer arm with silicon trackers enabled so far.
 - 3 configurations included: baseline detector + 2 extended vacuum designs.
- Initial simulation results to be shown today:
 - XY distributions of electron/positron hits in trackers
 - Sampling fraction for the calorimeter
- Calculating the photon energy from the pair spectrometer calorimeter.
- Compare E_gen to E_rec for each vacuum configuration to assess the advantages of designs 2 and 3 over the baseline.
- Include beam size effects \rightarrow 1.