

Deeply Virtual Compton Scattering (DVCS) at EIC

EIC User Group Early Career Workshop 2022

Igor Korover

July 24, 2022 Stony Brook

Fundamental Structure of the Nucleon

- Elastic electron scattering determines charge and magnetism of nucleon
- Approx. sphere with <r> ≈ 0.85 Fermi
- The proton contains quarks, as well as dynamically generated quark-antiquark pairs and gluons.
- The proton spin and mass have large contributions from the quark-gluon dynamics.

Nucleon Viewed in High Energy Electron Scattering: 1 Longitudinal Dimension

Lorentz Invariants

$$E_{cm}^{2} = (p+k)^{2}$$

$$Q^{2} = -(k-k')^{2}$$

$$x = \frac{Q^{2}}{2p \cdot q}$$
DIS

 Viewed from boosted frame, length contracted by

$$\gamma_{Breit} = \sqrt{1 + \frac{Q^2}{4M^2}}$$

- Internal motion of the proton's constituents is slowed down by time dilation - the <u>instantaneous</u> charge distribution of the proton is seen.
- In boosted frame x is understood as the <u>longitudinal</u> <u>momentum fraction</u> valence quarks: 0.1 < x < 1 sea quarks: x < 0.1

J. Bjorken, SLAC-PUB-0571 March 1969

Nucleon Tomography: 2 New Dimensions Transverse to Longitudinal Momentum

*Direction of longitudinal momentum normal to plane of slide

Structure mapped in terms of b_T = transverse position k_T = transverse momentum

> Goal: Unprecedented 21st Century Imaging of Hadronic Matter

Valence Quarks: JLab 12 GeV Sea Quarks and Gluons: EIC

3D Partonic Picture

Theorists have developed a powerful formalism for studying the 3D partonic picture of the nucleon and the nucleus. It is encoded in <u>Generalized Parton</u> <u>Distributions (GPDs)</u> and Transverse Momentum Dependent Distributions

5

Why GPDs are interesting?

- Imaging of the nucleon
- Spin decomposition of the nucleon
- Mass origin of the nucleon
- Dynamic properties of the nucleon

R. G. Milner and R. Ent, Visualizing the Proton (2022)

DIS

 $ep \rightarrow e'X$

Proton is destroyed

DIS

 $ep \rightarrow e'X$

Proton is destroyed

 $ep \to e'p'\gamma$

Keeping proton intact

"excitation of the proton constituents"

Additional particle: photon, (meson...)

Deeply Virtual Compton Scattering

DVCS process

$\sigma \propto H \times S$ Hard Soft

- Proof of factorization for the DVCS
 - at Bjorken limit
 - X. Ji and J. Osborne (1998)
 - J. C. Collins and A. Freund (1999)
 - proof simplified w/ EFT technique
 - CB, SF, DP, IR, I. Stewart (2002)
 - experimental tests
 - HERA, Jefferson Lab, Compass, ...

DVCS process

DVCS process

$$\begin{aligned} \frac{d\sigma}{dx_B dQ^2 d|t| d\phi} &= \Gamma \times |\mathcal{T}_{\rm BH} + \mathcal{T}_{\rm DVCS}|^2 \\ &= \Gamma \times (|\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{I}) \\ &\mathcal{T}_{\rm BH} \propto {\rm FF}, \quad \mathcal{T}_{\rm DVCS} \propto {\rm CFF} \end{aligned}$$

Pure QED

Bethe-Heitler

Irreducible Background

DVCS landscape

Jefferson Lab - CLAS12

Sangbaek Lee

14

Electron-Ion Collider

Polarized Electron Source

- <u>275 GeV</u>/nucleon max. on <u>18</u> GeV e-beam
- High luminosity: 10³⁴ e-nucleon cm⁻²s⁻¹
- 70% polarized electron, nucleon beams
- Full range of ions: p to U
- Two collider detectors
- Project officially launched by US DOE in January 2020
- Present schedule: accelerator turn-on 2031
- Project cost: \$ 2 billion approx.

Kinematic coverage

16

Kinematical coverage of EIC

Main detector

HADRON ENDCAP

ELECTRON ENDCAP

CENTRAL BARREL

Simulation tool: MILOU (3D) - generator <u>https://arxiv.org/pdf/hep-ph/0411389v1.pdf</u>

Used for Yellow report <u>arXiv:2103.05419</u>

 $3D - lookup tables (Q^2, x_B, t)$

KM20 - implemented in GeParD (Nucl.Phys.B794:244-323,2008)

GK - implemented in PARTONS ((arXiv:1512.06174)

Angular distributions for DVCS

DVCS kinematics

Electron and photon

detected in main barrel

Photon detection

Extraction of photon energy from clusters in EM calorimeters.

Vertex position is based on electron track.

Angular resolution: < 0.5 deg

Energy resolution: ~ 0.1 GeV

<u>Photons</u>

Momentum Resolution

Angular resolution

Photon detection efficiency

EEMC

Photon resolution and separation between photon

$$ep \rightarrow e'p'\pi^o \rightarrow e'p'\gamma\gamma$$

DVCS protons

5x41 GeV

Protons escape through beam pipe opening in the endcaps

Detection of scattered protons in Far Forward region

Far-Forward simulation

RP: ~6 m

RP: ~27 m

Cross section

- Corrected to acceptance
- Bin Volume
- Integrated luminosity 10 fb⁻¹

GPDs study is very active filed, both experimentally and theoretically

EIC - Study GPDs at low and intermediate x Bjorken region

High luminosity and large acceptance - precision measurements of GPDs

Thank you for your attention

