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Motivation

Current matrix elements for composite particles with arbitrary spin

Decompose matrix element in independent non-perturbative objects

〈
p′, s′ |jµ| p, s

〉
=

(
G1

(
Q2
) [
ε′
∗ · ε

]
+G3

(
Q2
) (q · ε′∗) (q · ε)

2m2

)(
p+ p′

)µ
+GM

(
Q2
) ((

q · ε′∗
)
εµ − (q · ε)

(
ε′
∗)µ)

Spin-j fields embedded in objects with > 2j + 1 components

Polarization four vector (ε) for spin 1 → pµε
µ(p, s) = 0

Rarita Schwinger for spin 3/2 → γµψµ(p, s) = 0

(need for constraints, subsidiary conditions)

Use (2j + 1)-component spinors

Via SL(2,C) fundamental rep tensor products [Zwanziger 60s, Polyzou ‘18]

Weinberg’s construction [64-65] (not yet applied in this context)
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Motivation

Advantages of Weinberg’s construction

Use only exact degrees of freedom (chiral reps), no need for constraints

No kinematic singularities (improved analyticity properties of operators)

Physical interpretation becomes more straightforward (amplitude matrix elements)

“Basic” in construction and implementation of su(2) algebra

For parity conserving interactions a generalized Dirac algebra is obtained

Easy to switch between forms of dynamics (instant form, light front)
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Introduction

Weinberg’s “Feynman rules for Any Spin” [1964]

Algebra for Generators of the Lorentz group

[Jl, Jm] = iεlmnJn , [Jl,Km] = iεlmnKn , [Kl,Km] = −iεlmnJn

Two independent su(2) subalgebras → irreps (jA, jB)

Am = 1
2(Jm + iKm) , Bm = 1

2(Jm − iKm)

[Al,Am] = iεlmnAn , [Bl,Bm] = iεlmnBn , [Al,Bm] = 0

Simplest irreps that contain spin-j → (2j + 1 components)

Right-handed (j, 0): Km → −iJm

Left-handed (0, j): Km → +iJm [Wigner(1939)]
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Introduction

Some Representations constructed out of the Chiral ones

(0, 0) → Scalar

(1/2, 0) → Right Weyl spinors & (0, 1/2) → Left Weyl spinors

(1/2, 0)
⊕

(0, 1/2) → Dirac (spin 1/2) spinors (direct sum)

(1/2, 1/2) → Vector (Defining representation)

(1, 0) → Right Chiral (spin 1) spinors & (0, 1) → Left Chiral (spin 1) spinors

(1, 0)
⊕

(0, 1) → Dirac (spin 1) spinors (direct sum)

(1, 1) → Tensor
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Canonical Space-Time Parameterization

Parameterizations (Foliations) of space-time → Specify equal time surfaces

Canonical or Instant time

Defined by rotationless boosts from rest:
◦
pµ = (m, 0, 0, 0)

to final momentum: pµ = (Ep, ~p ) = (
√
m2 + ~p 2, ~p )

ΛIF = exp
(
i~K · ~φ

)
= exp

(
iφ~K · φ̂

)
Then, pµ = (E, ~p ) = (ΛIF)µν

◦
p ν

implies, cosh(φ) = E
m , φ̂j sinh(φ) =

pj
m

Leading to the well known result: (ΛIF)µν =

(
E
m

~p
m

~p
m δij +

pipj
(E+m)m

)
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Light-Front Space-Time Parameterization

Light Front Dirac(1949)

p+ = Ep + pz , p− = Ep − pz

Defined by a longitudinal boost followed by a transverse boost

ΛLF
def. = exp

[
i~G · ~vT

]
· exp [iK3η]

LF Boost Generators (light front along z−axis),

G1 = Gx = Kx − Jy , G2 = Gy = Ky + Jx , K3 = Kz

Comparing the action of both boosts on the same rest momentum

we find the LF boost parameters

eη = p+

m , ~vT = ~pT
p+ → ΛLF = exp

[
i η
p+−m~pT · ~G + iηK3

]
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Propagators - Spinors - t-tensors

Propagator of chiral fields

Numerator (invariant)
Π

(j)
σσ′ (~p, ω) = m2jD

(j)
σσ′ [L(~p)]

(
D

(j)
σ′σ′′ [L(~p)]

)†
= m2j

(
e−2p̂·~J(j)θ

)
σσ′

Π̄
(j)
σσ′ (~p, ω) = m2jD̄

(j)
σσ′ [L(~p)]

(
D̄

(j)
σ′σ′′ [L(~p)]

)†
= m2j

(
e2p̂·

~J(j)θ
)
σσ′

Introduction of the t-tensors
Π

(j)
σσ′ (~p, ω) = t

µ1µ2...µ2j

σσ′ pµ1pµ2 . . . pµ2j

Π̄
(j)
σσ′ (~p, ω) = t̄

µ1µ2...µ2j

σσ′ pµ1pµ2 . . . pµ2j

These can also be used to write
the boosts/spinors

D
(j)
[L(p)]

= tµ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

D̄
(j)
[L(p)]

= t̄µ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

Instant form (Canonical) p̃µC =

√
m

2(m+ p0)
(p0 +m, ~p )

Light-Front p̃µLF =

√
m

4p+
(p+ +m, p`, ip`, p

+ −m)
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Propagators - Spinors - t-tensors

Properties of the t-tensors

Symmetric and (covariantly) traceless gµkµlt
µ1...µk...µl...µ2j

σσ′ = 0

Transform covariantly
(
D

(j)
[Λ]

)
σδ
t
µ1...µ2j

δδ′

(
D(j)†

[Λ]

)
δ′σ′

= Λν1
µ1 . . .Λν2j

µ2j t
ν1...ν2j
σσ′

Right chiral (t) and left chiral (t̄)
are related by charge conjugation

(+ for even (− for odd) spacelike indices)

t̄
µ1µ2...µ2j

σσ′ = (±)t
µ′
1µ

′
2...µ

′
2j

σσ′
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Algorithm for construction of t-tensors

Construction for t-tensor more insightful than Weinberg’s expressions

The 0-th degree polynomial in the J ’s is always t0...0 = 1

The linear polynomials
are the Rotation Group Generators t0...i...0 =

2

2j
Ji =

1

j
Ji

From pairwise symmetrizations of the rotation generators

t0...m...0...n...0 = tmn0...0 =
1

(2j)!
2!(2j−2)!

(
{Jm, Jn} −

1

3
δmn

3∑
r=1

{Jr, Jr}

)
+

1

3
t0...0δmn

=
j

(2j − 1)

({
tm0...0, tn0...0

}
− 1

j
δmnt

0...0

)
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Algorithm for construction of t-tensors

Continues for higher orders

Matrices have more and more off-diagonal elements

tlmn0...0 = t0...0l0...0m0...0n0...0 =
j

(2j − 2)

1

3

({
tl0...0, tmn0...0

}
+
{
tm0...0, tnl0...0

}
+
{
tn0...0, tlm0...0

}
−2

j

{
δlmt

n0...0 + δlnt
m0...0 + δmnt

l0...0
})

Construction stops after j steps (Cayley-Hamilton) (J − s)(J − s− 1)...(J + s) = 0

t-tensors contain an independent basis for the su(2j+1) algebra

A basis to decompose operators with physical interpretation for each term
(multipole expansion → mono-, di-, quadrupole, ...)

Ô = Tr [O] 1 + Tr [OJi] Ji + Tr [OJij ] Jij + · · · = 〈O〉1 +OiJi +OijJij + · · ·
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spin 1 example

Left Chiral Rep

t00 = 1 , t0i = ti0 = J
(1)
i , tij = {J (1)

1 , J
(1)
1 } − 1δij

tµν Transform covariantly D
(1)
[Λ]t

µνD(1)†
[Λ] = Λρ

µΛσ
νtρσ

Propagator (pµ = (Ep, ~p)): Π(1)(p) = tµνpµpν =

 (p−)
2 −

√
2p`p

− p2
`√

2prp
+ p+p− + p2

T

√
2p`p

−

p2
r

√
2prp

− (p+)
2


Boost/spinors (tµν p̃µp̃ν)

Canonical: D
(1)
IF =

1

2m (m+ p0)

 (m+ p−)2 −
√

2p`(m+ p−) p2
`

−
√

2pr(m+ p−) 2(m2 +mp0 + p2
T) −

√
2p`(m+ p+)

p2
r −

√
2pr(m+ p+) (m+ p+)

2


p̃µC =

√
m

2(m+p0)
(p0 +m, ~p )

Similarly for the Right Chiral Rep, only change is: J
(1)
i → J̄µ = (1,− ~J (1))
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Dirac (bispinors)

Generalized Dirac algebra

Parity conserving reactions are simpler in the direct sum of both chiral
representations (like the spin 1/2 case)

This leads to generalized Gamma matrices → Γµ1···µ2j =

(
0 tµ1···µ2j

t̄µ1···µ2j 0

)

Dirac basis for spin-1 → 1, Γ5, (9)Γµν , (9)ΓµνΓ5, (6)[Γµ1µ2 ,Γµ3µ4 ], (10){Γµ1µ2 ,Γµ3µ4}

Amplitudes can be evaluated by

Constructing expressions for the generalized bilinears

Using trace algebra

Similarly expressions for covariant density matrices can be constructed

Frank Vera (fveraveg@fiu.edu) (FIU) Observables for targets with any spin July 25, 2022 13 / 18



Dirac (bispinors)

Generalized Dirac and Gordon identities

Dirac Equation (constraint on bispinors)(
γµ1...µ2jpµ1...µ2j

−m2j
)
usp = (p//

(j) −m2j)usp = 0

Gordon identity separates general bilinears into convection and magnetization
currents (spin 1/2 Lorce-2017)

us
′

p′ (Γ)usp =
1

2m̄2j
us

′

p′

({
P//

(j)
,Γ
}

+
1

2

[
∆//

(j)
,Γ
])

usp

0 = us
′

p′

(
1

2

{
∆//

(j)
,Γ
}

+
[
P//

(j)
,Γ
])

usp

with, P//(j) = γµ1...µ2jPµ1...µ2j

∆//(j) = γµ1...µ2j∆µ1...µ2j
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EM Current Parameterized by Sachs Form Factors

From spinor
Representation:

〈
p′, s′ |jµ(0)| p, s

〉
= 2Pµ

(
1GC

(
Q2)− ∆ρ∆σ

(
tρσ − 1

3
gρσ1

)
2M2

P 2

M2
GQ

(
Q2))

s′s

−iεµρσλ
(

∆ρPσ
(
tλν − 1

3
gλν1

)
nνt√

P 2
GM

(
Q2))

s′s

P = 1
2(p′ + p)

∆ = p′ − p (∆2 = −Q2)

nνt = (1, 0, 0, 0)

Using polarization vectors
[Wang & Lorcé (2022)]

Γµαβ = 2Pµ
(

ΠαβGC
(
Q2)− ∆ρ∆σ (Σρσ)αβ

2M2

P 2

M2
GQ

(
Q2))

s′s

−iεµρσλ
(

∆ρPσ (Σλ)αβ√
P 2

GM
(
Q2))

s′s

Current conservation is guaranteed: Γµ∆µ = 0

(on-shell condition → Pµ∆µ = 0)
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EM Current

From Spinor Representation (Parameterized by Sachs Form Factors):

jµCh(P,∆) = 2Pµ
(

1GC −
∆ρ∆σ(tρσ− 1

3 gρσ1)
2M2

P 2

M2GQ

)
− iεµρσλ∆ρPσ(tλν− 1

3 gλν1)nνt√
P 2

GM

Textbook Representation
(using Polarization vectors)

〈p′, s′ |jµ(0)| p, s〉 = ε∗s′
α (p′) jµαβ(P,∆)εβs (p)

Parameterized by
Covariant Form Factors

jµαβ(P,∆) = 2Pµ
[
gαβG1

(
Q2
)
− ∆α∆β

M2 G2

(
Q2
)]

+
[
∆αgµβ −∆βgµα

]
G3

(
Q2
)

εµs (p) =
(
p·εs
M , εs + p(p·εs)

M(p0+M)

)
ε± = 1√

2
(∓1,−i, 0), ε0 = (0, 0, 1)

The two sets of form factors are related by:

τ = Q2/(4M2)

GC
(
Q2
)

= G1

(
Q2
)

+
2

3
τGQ

(
Q2
)

GM
(
Q2
)

= G2

(
Q2
)

GQ
(
Q2
)

= G1

(
Q2
)
−G2

(
Q2
)

+ (1 + τ)G3

(
Q2
)
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EM Current - Example: Breit Frame

In the Breit Frame (~P = 0) → pµB =
(
P 0,−∆/2

)
and pµB =

(
P 0,∆/2

)
with P 0

B =
√
M2 + ∆2

4

Covariant Chiral Representation:

〈p′, s′ |jµ(0)| p, s〉 = Γµ(P,∆) = 2Pµ

(
1GC

(
Q2
)
−

∆ρ∆σ
(
tρσ − 1

3gρσ1
)

2M2

P 2

M2
GQ

(
Q2
))

s′s

−iεµρσλ
(

∆ρPσ
(
tλν − 1

3gλν1
)
nνt√

P 2
GM

(
Q2
))

s′s

Textbook Representation in terms of Polarization vectors:〈
p′B , s

′ ∣∣j0(0)
∣∣ pB , s〉 = 2P 0

B

[
(ε∗s′ · εs)GC

(
Q2
)

+

(
(∆ · ε∗s′) (∆ · εs)−

1

3
∆2 (ε∗s′ · εs)

)
GQ

(
Q2
)

2M2

]

〈p′B , s′|j(0)|pB , s〉 = 2P 0
B [(∆ · ε∗s′) εs − (∆ · εs) ε∗s′ ]

GM
(
Q2
)

2M

ε± = 1√
2
(∓1,−i, 0), ε0 = (0, 0, 1), pµε

µ(p, s) = 0

(L.L. Frankfurt, T. Frederico, M. Strickman
(1993)

GC
(
Q2
)

= G1

(
Q2
)

+
2

3
τGQ

(
Q2
)

GM
(
Q2
)

= G2

(
Q2
)

GQ
(
Q2
)

= G1

(
Q2
)
−G2

(
Q2
)

+ (1 + τ)G3

(
Q2
) (1)
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Summary

Weinberg’s construction allows for an efficient and manifestly covariant calculation of
currents for any spin

Central (and multifaceted) role for the covariant t-tensors

Simple algorithm. Only need to know the matrices for the Generators of rotations in
the representation of interest.

Many applications and extensions possible (Parameterization for SIDIS and DVCS)
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