Observables for scattering on targets with any spin

Frank Vera (fveraveg@fiu.edu)

FIU

July 25, 2022
In collaboration with Wim Cosyn

Florida International University Miami's public research university

Motivation

Current matrix elements for composite particles with arbitrary spin

- Decompose matrix element in independent non-perturbative objects
$\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle=\left(G_{1}\left(Q^{2}\right)\left[\varepsilon^{\prime *} \cdot \varepsilon\right]+G_{3}\left(Q^{2}\right) \frac{\left(q \cdot \varepsilon^{\prime *}\right)(q \cdot \varepsilon)}{2 m^{2}}\right)\left(p+p^{\prime}\right)^{\mu}+G_{M}\left(Q^{2}\right)\left(\left(q \cdot \varepsilon^{\prime *}\right) \varepsilon^{\mu}-(q \cdot \varepsilon)\left(\varepsilon^{\prime *}\right)^{\mu}\right)$
- Spin-j fields embedded in objects with $>2 j+1$ components
- Polarization four vector (ε) for spin $1 \rightarrow p_{\mu} \epsilon^{\mu}(p, s)=0$
- Rarita Schwinger for spin $3 / 2 \rightarrow \gamma^{\mu} \psi_{\mu}(p, s)=0$ (need for constraints, subsidiary conditions)
- Use $(2 j+1)$-component spinors
- Via SL(2,C) fundamental rep tensor products [Zwanziger 60s, Polyzou '18]
- Weinberg's construction [64-65] (not yet applied in this context)

Motivation

Advantages of Weinberg's construction

- Use only exact degrees of freedom (chiral reps), no need for constraints
- No kinematic singularities (improved analyticity properties of operators)
- Physical interpretation becomes more straightforward (amplitude matrix elements)
- "Basic" in construction and implementation of $\operatorname{su}(2)$ algebra
- For parity conserving interactions a generalized Dirac algebra is obtained
- Easy to switch between forms of dynamics (instant form, light front)

Introduction

Weinberg's "Feynman rules for Any Spin" [1964]

- Algebra for Generators of the Lorentz group

$$
\left[\mathbb{J}_{l}, \mathbb{J}_{m}\right]=i \epsilon_{l m n} \mathbb{J}_{n}, \quad\left[\mathbb{J}_{l}, \mathbb{K}_{m}\right]=i \epsilon_{l m n} \mathbb{K}_{n}, \quad\left[\mathbb{K}_{l}, \mathbb{K}_{m}\right]=-i \epsilon_{l m n} \mathbb{J}_{n}
$$

- Two independent $\mathrm{su}(2)$ subalgebras $\rightarrow \operatorname{irreps}\left(j_{A}, j_{B}\right)$

$$
\begin{gathered}
\mathbb{A}_{m}=\frac{1}{2}\left(\mathbb{J}_{m}+i \mathbb{K}_{m}\right) \quad, \quad \mathbb{B}_{m}=\frac{1}{2}\left(\mathbb{J}_{m}-i \mathbb{K}_{m}\right) \\
{\left[\mathbb{A}_{l}, \mathbb{A}_{m}\right]=i \epsilon_{l m n} \mathbb{A}_{n}, \quad\left[\mathbb{B}_{l}, \mathbb{B}_{m}\right]=i \epsilon_{l m n} \mathbb{B}_{n}, \quad\left[\mathbb{A}_{l}, \mathbb{B}_{m}\right]=0}
\end{gathered}
$$

- Simplest irreps that contain spin- $j \rightarrow(2 j+1$ components $)$
- Right-handed $(j, 0): \mathbb{K}_{m} \rightarrow-i \mathbb{J}_{m}$
- Left-handed $(0, j): \mathbb{K}_{m} \rightarrow+i \mathbb{J}_{m}$

Introduction

Some Representations constructed out of the Chiral ones

- $(0,0) \rightarrow$ Scalar
- $(1 / 2,0) \rightarrow$ Right Weyl spinors $\&(0,1 / 2) \rightarrow$ Left Weyl spinors
- $(1 / 2,0) \oplus(0,1 / 2) \rightarrow$ Dirac (spin $1 / 2)$ spinors (direct sum)
- $(1 / 2,1 / 2) \rightarrow$ Vector (Defining representation)
- $(1,0) \rightarrow$ Right Chiral (spin 1$)$ spinors $\& \quad(0,1) \rightarrow$ Left Chiral (spin 1$)$ spinors
- $(1,0) \oplus(0,1) \rightarrow$ Dirac (spin 1) spinors (direct sum)
- $(1,1) \rightarrow$ Tensor

Canonical Space-Time Parameterization

Parameterizations (Foliations) of space-time \rightarrow Specify equal time surfaces
Canonical or Instant time

- Defined by rotationless boosts from rest: $\stackrel{\circ}{p}^{\mu}=(m, 0,0,0)$ to final momentum: $p^{\mu}=\left(E_{p}, \vec{p}\right)=\left(\sqrt{m^{2}+\vec{p}^{2}}, \vec{p}\right)$

$$
\Lambda^{\mathrm{IF}}=\exp (i \overrightarrow{\mathbb{K}} \cdot \vec{\phi})=\exp (i \phi \overrightarrow{\mathbb{K}} \cdot \hat{\phi})
$$

- Then, $p^{\mu}=(E, \vec{p})=\left(\Lambda^{\mathrm{IF}}\right)^{\mu}{ }_{\nu}{ }^{\circ}{ }^{\nu}$

implies, $\cosh (\phi)=\frac{E}{m}, \quad \hat{\phi}_{j} \sinh (\phi)=\frac{p_{j}}{m}$

Leading to the well known result:

$$
\left(\Lambda^{\mathrm{IF}}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cc}
\frac{E}{m} & \frac{\vec{p}}{m} \\
\frac{p}{m} & \delta_{i j}+\frac{p_{i} p_{j}}{(E+m) m}
\end{array}\right)
$$

Light-Front Space-Time Parameterization

Light Front

Dirac(1949)

$p^{+}=E_{p}+p_{z}, p^{-}=E_{p}-p_{z}$

- Defined by a longitudinal boost followed by a transverse boost

$$
\Lambda_{\text {def. }}^{\mathrm{LF}}=\exp \left[i \overrightarrow{\mathbb{G}} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{T}}\right] \cdot \exp \left[i \mathbb{K}_{3} \eta\right]
$$

- LF Boost Generators (light front along z-axis),

$$
\mathbb{G}_{1}=\mathbb{G}_{x}=\mathbb{K}_{x}-\mathbb{J}_{y}, \quad \mathbb{G}_{2}=\mathbb{G}_{y}=\mathbb{K}_{y}+\mathbb{J}_{x}, \quad \mathbb{K}_{3}=\mathbb{K}_{z}
$$

- Comparing the action of both boosts on the same rest momentum we find the LF boost parameters

$$
e^{\eta}=\frac{p^{+}}{m}, \quad \overrightarrow{\mathrm{v}}_{T}=\frac{\vec{p}_{T}}{p^{+}} \rightarrow \Lambda^{\mathrm{LF}}=\exp \left[i \frac{\eta}{p^{+}-m} \vec{p}_{T} \cdot \overrightarrow{\mathbb{G}}+i \eta \mathbb{K}_{3}\right]
$$

Propagators - Spinors - t-tensors

Propagator of chiral fields

- Numerator (invariant)

$$
\begin{aligned}
& \Pi_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=m^{2 j} D_{\sigma \sigma^{\prime}}^{(j)}[L(\vec{p})]\left(D_{\sigma^{\prime} \sigma^{\prime \prime}}^{(j)}[L(\vec{p})]\right)^{\dagger}=m^{2 j}\left(e^{-2 \hat{p} \cdot \vec{J}^{(j)} \theta}\right)_{\sigma \sigma^{\prime}} \\
& \bar{\Pi}_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=m^{2 j} \bar{D}_{\sigma \sigma^{\prime}}^{(j)}[L(\vec{p})]\left(\bar{D}_{\sigma^{\prime} \sigma^{\prime \prime}}^{(j)}[L(\vec{p})]\right)^{\dagger}=m^{2 j}\left(e^{2 \hat{p} \cdot \vec{J}^{(j)} \theta}\right)_{\sigma \sigma^{\prime}}
\end{aligned}
$$

- Introduction of the t-tensors

$$
\begin{aligned}
& \Pi_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=t_{\sigma \sigma^{\prime}}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} p_{\mu_{1}} p_{\mu_{2}} \ldots p_{\mu_{2 j}} \\
& \bar{\Pi}_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=\bar{t}_{\sigma \sigma^{\prime}}^{\mu_{2} \mu_{2} \ldots \mu_{2 j}} p_{\mu_{1}} p_{\mu_{2}} \ldots p_{\mu_{2 j}}
\end{aligned}
$$

- These can also be used to write

$$
\begin{aligned}
& D_{[L(p)]}^{(j)}=t^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}} \\
& \bar{D}_{[L(p)]}^{(j)}=\bar{t}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}}
\end{aligned}
$$

Instant form (Canonical)

$$
\tilde{p}_{\mathrm{C}}^{\mu}=\sqrt{\frac{m}{2\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)
$$

Light-Front

$$
\tilde{p}_{\mathrm{LF}}^{\mu}=\sqrt{\frac{m}{4 p^{+}}}\left(p^{+}+m, p_{\ell}, i p_{\ell}, p^{+}-m\right)
$$

Propagators - Spinors - t-tensors

Properties of the t-tensors

- Symmetric and (covariantly) traceless

$$
g_{\mu_{k} \mu_{l}} t_{\sigma \sigma^{\prime}}^{\mu_{1} \ldots \mu_{k} \ldots \mu_{l} \ldots \mu_{2 j}}=0
$$

- Transform covariantly

$$
\left(D_{[\Lambda]}^{(j)}\right)_{\sigma \delta} t_{\delta \delta^{\prime}}^{\mu_{1} \ldots \mu_{2 j}}\left(D_{[\Lambda]}^{(j)}{ }_{[\Lambda \Lambda}^{\dagger}\right)_{\delta^{\prime} \sigma^{\prime}}=\Lambda_{\nu_{1}}{ }^{\mu_{1}} \ldots \Lambda_{\nu_{2 j}}{ }^{\mu_{2 j}} t_{\sigma \sigma^{\prime}}^{\nu_{1} \ldots \nu_{2 j}}
$$

- Right chiral (t) and left chiral (\bar{t}) are related by charge conjugation

$$
\bar{t}_{\sigma \sigma^{\prime}}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}}=(\pm) t_{\sigma \sigma^{\prime}}^{\mu_{1}^{\prime} \mu_{\mu}^{\prime} \ldots \mu_{2 j}^{\prime}}
$$

(+ for even (- for odd) spacelike indices)

Algorithm for construction of t-tensors

Construction for t-tensor more insightful than Weinberg's expressions

- The 0 -th degree polynomial in the J 's is always $\quad t^{0 \ldots 0}=\mathbf{1}$
- The linear polynomials are the Rotation Group Generators

$$
t^{0 \ldots i \ldots 0}=\frac{2}{2 j} J_{i}=\frac{1}{j} J_{i}
$$

- From pairwise symmetrizations of the rotation generators

$$
\begin{aligned}
t^{0 \ldots m \ldots 0 \ldots n \ldots 0}=t^{m n 0 \ldots 0}= & \frac{1}{\frac{(2 j)!}{2!(2 j-2)!}}\left(\left\{J_{m}, J_{n}\right\}-\frac{1}{3} \delta_{m n} \sum_{r=1}^{3}\left\{J_{r}, J_{r}\right\}\right)+\frac{1}{3} t^{0 \ldots 0} \delta_{m n} \\
& =\frac{j}{(2 j-1)}\left(\left\{t^{m 0 \ldots 0}, t^{n 0 \ldots 0}\right\}-\frac{1}{j} \delta_{m n} t^{0 \ldots 0}\right)
\end{aligned}
$$

Algorithm for construction of t-tensors

- Continues for higher orders
- Matrices have more and more off-diagonal elements

$$
\begin{aligned}
t^{l m n 0 \ldots 0}=t^{0 \ldots 0 l 0 \ldots 0 m 0 \ldots 0 n 0 \ldots 0}=\frac{j}{(2 j-2)} \frac{1}{3}(& \left\{t^{l 0 \ldots 0}, t^{m n 0 \ldots 0}\right\}+\left\{t^{m 0 \ldots 0}, t^{n l 0 \ldots 0}\right\}+\left\{t^{n 0 \ldots 0}, t^{l m 0 \ldots 0}\right\} \\
& \left.-\frac{2}{j}\left\{\delta_{l m} t^{n 0 \ldots 0}+\delta_{l n} t^{m 0 \ldots 0}+\delta_{m n} t^{l 0 \ldots 0}\right\}\right)
\end{aligned}
$$

- Construction stops after j steps (Cayley-Hamilton) $(J-s)(J-s-1) \ldots(J+s)=0$
- t-tensors contain an independent basis for the $\operatorname{su}(2 \mathrm{j}+1)$ algebra
- A basis to decompose operators with physical interpretation for each term (multipole expansion \rightarrow mono-, di-, quadrupole, ...)

$$
\hat{O}=\operatorname{Tr}[O] \mathbf{1}+\operatorname{Tr}\left[O J_{i}\right] J_{i}+\operatorname{Tr}\left[O J_{i j}\right] J_{i j}+\cdots=\langle O\rangle \mathbf{1}+O_{i} J_{i}+O_{i j} J_{i j}+\cdots
$$

spin 1 example

Left Chiral Rep

- $t^{00}=\mathbf{1}, t^{0 i}=t^{i 0}=J_{i}^{(1)}, t^{i j}=\left\{J_{1}^{(1)}, J_{1}^{(1)}\right\}-\mathbf{1} \delta_{i j}$
- $t^{\mu \nu}$ Transform covariantly $D_{[\Lambda]}^{(1)} t^{\mu \nu} D^{(1)}{ }_{[\Lambda]}^{\dagger}=\Lambda_{\rho}{ }^{\mu} \Lambda_{\sigma}{ }^{\nu} t^{\rho \sigma}$
- Propagator $\left(p_{\mu}=\left(E_{p}, \vec{p}\right)\right): \quad \Pi^{(1)}(p)=t^{\mu \nu} p_{\mu} p_{\nu}=\left(\begin{array}{ccc}\left(p^{-}\right)^{2} & -\sqrt{2} p_{\ell} p^{-} & p_{\ell}^{2} \\ \sqrt{2} p_{r} p^{+} & p^{+} p^{-}+p_{T}^{2} & \sqrt{2} p_{\ell} p^{-} \\ p_{r}^{2} & \sqrt{2} p_{r} p^{-} & \left(p^{+}\right)^{2}\end{array}\right)$
- Boost/spinors $\left(t^{\mu \nu} \tilde{p}_{\mu} \tilde{p}_{\nu}\right)$

Canonical: $D_{\mathrm{IF}}^{(1)}=\frac{1}{2 m\left(m+p_{0}\right)}\left(\begin{array}{ccc}\left(m+p^{-}\right)^{2} & -\sqrt{2} p_{\ell}\left(m+p^{-}\right) & p_{\ell}^{2} \\ -\sqrt{2} p_{r}\left(m+p^{-}\right) & 2\left(m^{2}+m p_{0}+p_{\mathrm{T}}^{2}\right) & -\sqrt{2} p_{\ell}\left(m+p^{+}\right) \\ p_{r}^{2} & -\sqrt{2} p_{r}\left(m+p^{+}\right) & \left(m+p^{+}\right)^{2}\end{array}\right)$

$$
\tilde{p}_{\mathrm{C}}^{\mu}=\sqrt{\frac{m}{2\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)
$$

Similarly for the Right Chiral Rep, only change is: $J_{i}^{(1)} \rightarrow \bar{J}^{\mu}=\left(1,-\vec{J}^{(1)}\right)$

Dirac (bispinors)

Generalized Dirac algebra

- Parity conserving reactions are simpler in the direct sum of both chiral representations (like the spin $1 / 2$ case)
- This leads to generalized Gamma matrices $\rightarrow \Gamma^{\mu_{1} \cdots \mu_{2 j}}=\left(\begin{array}{cc}0 & t^{\mu_{1} \cdots \mu_{2 j}} \\ \bar{t}^{\mu_{1} \cdots \mu_{2 j}} & 0\end{array}\right)$
- Dirac basis for spin-1 $\rightarrow \mathbf{1}, \Gamma_{5},(9) \Gamma^{\mu \nu},(9) \Gamma^{\mu \nu} \Gamma_{5},(6)\left[\Gamma^{\mu_{1} \mu_{2}}, \Gamma^{\mu_{3} \mu_{4}}\right]$, (10) $\left\{\Gamma^{\mu_{1} \mu_{2}}, \Gamma^{\mu_{3} \mu_{4}}\right\}$
- Amplitudes can be evaluated by
- Constructing expressions for the generalized bilinears
- Using trace algebra
- Similarly expressions for covariant density matrices can be constructed

Dirac (bispinors)

Generalized Dirac and Gordon identities

- Dirac Equation (constraint on bispinors)

$$
\left(\gamma^{\mu_{1} \ldots \mu_{2 j}} p_{\mu_{1} \ldots \mu_{2 j}}-m^{2 j}\right) u_{p}^{s}=\left(\not p^{(j)}-m^{2 j}\right) u_{p}^{s}=0
$$

- Gordon identity separates general bilinears into convection and magnetization currents (spin 1/2 Lorce-2017)

$$
\begin{aligned}
u_{p^{\prime}}^{s^{\prime}}(\Gamma) u_{p}^{s} & =\frac{1}{2 \bar{m}^{2 j}} u_{p^{\prime}}^{s^{\prime}}\left(\left\{\not p^{(j)}, \Gamma\right\}+\frac{1}{2}\left[\not \Delta^{(j)}, \Gamma\right]\right) u_{p}^{s} \\
0 & =u_{p^{\prime}}^{s^{\prime}}\left(\frac{1}{2}\left\{\not \Delta^{(j)}, \Gamma\right\}+\left[\not p^{(j)}, \Gamma\right]\right) u_{p}^{s}
\end{aligned}
$$

with, $\quad \not P^{(j)}=\gamma^{\mu_{1} \ldots \mu_{2 j}} P_{\mu_{1} \ldots \mu_{2 j}}$

$$
\not \forall^{(j)}=\gamma^{\mu_{1} \ldots \mu_{2 j}} \Delta_{\mu_{1} \ldots \mu_{2 j}}^{\mu_{1} \ldots \mu_{2 j}}
$$

EM Current Parameterized by Sachs Form Factors

From spinor
Representation:

$$
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}(0)|p, s\rangle=2 P^{\mu}\left(\mathbf{1} G_{C}\left(Q^{2}\right)-\frac{\Delta^{\rho} \Delta^{\sigma}\left(t_{\rho \sigma}-\frac{1}{3} g_{\rho \sigma} \mathbf{1}\right)}{2 M^{2}} \frac{P^{2}}{M^{2}} G_{Q}\left(Q^{2}\right)\right)_{s^{\prime} s}
$$

$$
\begin{aligned}
& P=\frac{1}{2}\left(p^{\prime}+p\right) \\
& \Delta=p^{\prime}-p \quad\left(\Delta^{2}=-Q^{2}\right) \\
& n_{t}^{\nu}=(1,0,0,0)
\end{aligned}
$$

$$
-i \epsilon^{\mu \rho \sigma \lambda}\left(\frac{\Delta_{\rho} P_{\sigma}\left(t_{\lambda \nu}-\frac{1}{3} g_{\lambda \nu} \mathbf{1}\right) n_{t}^{\nu}}{\sqrt{P^{2}}} G_{M}\left(Q^{2}\right)\right)_{s^{\prime} s}
$$

Using polarization vectors [Wang \& Lorcé (2022)]

$$
\begin{gathered}
\Gamma^{\mu \alpha \beta}=2 P^{\mu}\left(\Pi^{\alpha \beta} G_{C}\left(Q^{2}\right)-\frac{\Delta^{\rho} \Delta^{\sigma}\left(\Sigma_{\rho \sigma}\right)^{\alpha \beta}}{2 M^{2}} \frac{P^{2}}{M^{2}} G_{Q}\left(Q^{2}\right)\right)_{s^{\prime} s} \\
-i \epsilon^{\mu \rho \sigma \lambda}\left(\frac{\Delta_{\rho} P_{\sigma}\left(\Sigma_{\lambda}\right)^{\alpha \beta}}{\sqrt{P^{2}}} G_{M}\left(Q^{2}\right)\right)_{s^{\prime} s}
\end{gathered}
$$

Current conservation is guaranteed: $\Gamma^{\mu} \Delta_{\mu}=0$
(on-shell condition $\rightarrow P^{\mu} \Delta_{\mu}=0$)

EM Current

From Spinor Representation (Parameterized by Sachs Form Factors):

$$
j_{\mathrm{Ch}}^{\mu}(P, \Delta)=2 P^{\mu}\left(\mathbf{1} G_{C}-\frac{\Delta^{\rho} \Delta^{\sigma}\left(t_{\rho \sigma}-\frac{1}{3} g_{\rho \sigma} \mathbf{1}\right)}{2 M^{2}} \frac{P^{2}}{M^{2}} G_{Q}\right)-\frac{i \epsilon^{\mu \rho \sigma \lambda} \Delta_{\rho} P_{\sigma}\left(t_{\lambda \nu}-\frac{1}{3} g_{\lambda \nu} \mathbf{1}\right) n_{t}^{\nu}}{\sqrt{P^{2}}} G_{M}
$$

Textbook Representation (using Polarization vectors)

$$
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}(0)|p, s\rangle=\varepsilon_{s^{\prime}}^{* \alpha}\left(p^{\prime}\right) j_{\alpha \beta}^{\mu}(P, \Delta) \varepsilon_{s}^{\beta}(p)
$$

Parameterized by Covariant Form Factors

$$
j_{\alpha \beta}^{\mu}(P, \Delta)=2 P^{\mu}\left[g_{\alpha \beta} G_{1}\left(Q^{2}\right)-\frac{\Delta_{\alpha} \Delta_{\beta}}{M^{2}} G_{2}\left(Q^{2}\right)\right]
$$

$$
\varepsilon_{s}^{\mu}(p)=\left(\frac{\boldsymbol{p} \cdot \boldsymbol{\epsilon}_{\boldsymbol{s}}}{M}, \boldsymbol{\epsilon}_{s}+\frac{\boldsymbol{p}\left(\boldsymbol{p} \cdot \boldsymbol{\epsilon}_{s}\right)}{M\left(p^{0}+M\right)}\right)
$$

$$
+\left[\Delta^{\alpha} g_{\beta}^{\mu}-\Delta^{\beta} g_{\alpha}^{\mu}\right] G_{3}\left(Q^{2}\right)
$$

$\boldsymbol{\epsilon}_{ \pm}=\frac{1}{\sqrt{2}}(\mp 1,-i, 0), \boldsymbol{\epsilon}_{0}=(0,0,1)$
The two sets of form factors are related by:

$$
\begin{aligned}
G_{C}\left(Q^{2}\right) & =G_{1}\left(Q^{2}\right)+\frac{2}{3} \tau G_{Q}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =G_{2}\left(Q^{2}\right) \\
G_{Q}\left(Q^{2}\right) & =G_{1}\left(Q^{2}\right)-G_{2}\left(Q^{2}\right)+(1+\tau) G_{3}\left(Q^{2}\right)
\end{aligned}
$$

EM Current - Example: Breit Frame

In the Breit Frame $(\vec{P}=0) \rightarrow p_{B}^{\mu}=\left(P^{0},-\Delta / 2\right)$ and $p_{B}^{\mu}=\left(P^{0}, \Delta / 2\right)$ with $P_{B}^{0}=\sqrt{M^{2}+\frac{\Delta^{2}}{4}}$
Covariant Chiral Representation:

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}(0)|p, s\rangle=\Gamma^{\mu}(P, \Delta) & =2 P^{\mu}\left(\mathbf{1} G_{C}\left(Q^{2}\right)-\frac{\Delta^{\rho} \Delta^{\sigma}\left(t_{\rho \sigma}-\frac{1}{3} g_{\rho \sigma} \mathbf{1}\right)}{2 M^{2}} \frac{P^{2}}{M^{2}} G_{Q}\left(Q^{2}\right)\right)_{s^{\prime} s} \\
& -i \epsilon^{\mu \rho \sigma \lambda}\left(\frac{\Delta_{\rho} P_{\sigma}\left(t_{\lambda \nu}-\frac{1}{3} g_{\lambda \nu} \mathbf{1}\right) n_{t}^{\nu}}{\sqrt{P^{2}}} G_{M}\left(Q^{2}\right)\right)_{s^{\prime} s}
\end{aligned}
$$

Textbook Representation in terms of Polarization vectors:

$$
\begin{aligned}
&\left\langle p_{B}^{\prime}, s^{\prime}\right| j^{0}(0)\left|p_{B}, s\right\rangle=2 P_{B}^{0}\left[\left(\boldsymbol{\epsilon}_{s^{\prime}}^{*} \cdot \boldsymbol{\epsilon}_{s}\right) G_{C}\left(Q^{2}\right)+\left(\left(\boldsymbol{\Delta} \cdot \boldsymbol{\epsilon}_{s^{\prime}}^{*}\right)\left(\boldsymbol{\Delta} \cdot \boldsymbol{\epsilon}_{s}\right)-\frac{1}{3} \Delta^{2}\left(\boldsymbol{\epsilon}_{s^{\prime}}^{*} \cdot \boldsymbol{\epsilon}_{s}\right)\right) \frac{G_{Q}\left(Q^{2}\right)}{2 M^{2}}\right] \\
&\left\langle p_{B}^{\prime}, s^{\prime}\right| \boldsymbol{j}(0)\left|p_{B}, s\right\rangle=2 P_{B}^{0}\left[\left(\boldsymbol{\Delta} \cdot \boldsymbol{\epsilon}_{s^{\prime}}^{*}\right) \boldsymbol{\epsilon}_{s}-\left(\boldsymbol{\Delta} \cdot \boldsymbol{\epsilon}_{s}\right) \boldsymbol{\epsilon}_{s^{\prime}}^{*}\right] \frac{G_{M}\left(Q^{2}\right)}{2 M} \\
& \boldsymbol{\epsilon}_{ \pm}=\frac{1}{\sqrt{2}}(\mp 1,-i, 0), \quad \boldsymbol{\epsilon}_{0}=(0,0,1), \quad p_{\mu} \varepsilon^{\mu}(p, s)=0
\end{aligned}
$$

Summary

- Weinberg's construction allows for an efficient and manifestly covariant calculation of currents for any spin
- Central (and multifaceted) role for the covariant t-tensors
- Simple algorithm. Only need to know the matrices for the Generators of rotations in the representation of interest.
- Many applications and extensions possible (Parameterization for SIDIS and DVCS)

