SMEFT projections of neutral-current PVDIS asymmetries at the EIC

Kağan Şimşek

Northwestern University

in collaboration with

Radja Boughezal, Alexander Emmert, Tyler Kutz, Sonny Mantry, Michael Nycz, Frank Petriello, Daniel Wiegand, and Xiaochao Zheng

reference: PRD 106 (2022) 016006 [2204.07557]

EIC Early Career Workshop 2022 CFNS Stony Brook University

July 24-25, 2022

troduction	Neutral-current DIS and SMEFT	Data analysis	SMEFT fit results	

- We study NC DIS cross-section asymmetries at EIC.
- BSM effects are parametrized in SMEFT framework.
- Higher-dimensional operators are built of existing SM particles with Wilson coefficients as effective couplings at UV scale Λ:

$$\mathscr{L}_{\mathrm{SMEFT}} = \mathscr{L}_{\mathrm{SM}} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_{k}^{(n)} O_{k}^{(n)}$$

- All new physics is assumed to be heavier than all SM states and accessible collider energy.
- We focus on semi-leptonic 4-fermion $O_k^{(n)}$ at n = 6.
- We find that the EIC can
 - probe complementarily and competitively to LHC DY
 - resolve blind spots observed in LHC NC DY data fits

Neutral-current DIS and SMEFT ●0000	Data analysis 000000	SMEFT fit results 00000	

We study the NC DIS in the process $\ell + H \rightarrow \ell' + X$, where $\ell = e^-, e^+$ and H = p, D:

We parameterize the vertex factors in terms of vector and axial couplings:

We don't consider Yukawa or dipole interactions because they are suppressed by fermion masses, which we assume to vanish.

SMEFT operators shift the usual vector and axial SM couplings in a gauge-invariant way: e.g.

$$g_1^{(fZ)} = g_V^f + \mathcal{O}(C_k), \quad g_5^{(fZ)} = g_A^f + \mathcal{O}(C_k)$$

Neutral-current DIS and SMEFT	Data analysis	SMEFT fit results	Conclusion
0000			

Operators that contribute to the *ffV* and $\ell \ell q q$ vertices at dimension 6 are (Grzadkowski *et al.* [1008.4884]):

ffV	llqq
$O_{\varphi\ell}^{(1)} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{\ell} \gamma^{\mu} \ell)$	$O_{\ell \sigma}^{(1)} = (\bar{\ell} \gamma_{\mu} \ell) (\bar{q} \gamma^{\mu} q)$
$O_{\varphi\ell}^{(3)} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \tau^{I} \varphi)(\bar{\ell} \gamma^{\mu} \tau^{I} \ell)$	$O_{\ell q}^{(3)} = (\bar{\ell} \gamma_{\mu} \tau^{I} \ell) (\bar{q} \gamma^{\mu} \tau^{I} q)$
$O_{\varphi e} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e)$	$O_{eu} = (\bar{e}\gamma_{\mu}e)(\bar{u}\gamma^{\mu}u)$
$O^{(1)}_{arphi q} = (arphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} arphi) (ar{q} \gamma^{\mu} q)$	$O_{ed} = (\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d)$
$O^{(3)}_{\varphi q} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \tau^{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q)$	$O_{\ell u} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u)$
$O_{\varphi u} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{u} \gamma^{\mu} u)$	$O_{\ell d} = (\bar{\ell} \gamma_{\mu} \ell) (\bar{d} \gamma^{\mu} d)$
$O_{\varphi d} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{d} \gamma^{\mu} d)$	$O_{qe} = (\bar{q}\gamma_{\mu}q)(\bar{e}\gamma^{\mu}e)$

There is one more:

 $O_{\varphi WB} = (\varphi^{\dagger} \tau^{I} \varphi) W^{I}_{\mu\nu} B^{\mu\nu} \Rightarrow$ causes kinetic mixing of W^{3} and B \Rightarrow universally shifts the *ffV* vertices after diagonalization that gives physical photon and *Z* boson states

Neutral-current DIS and SMEFT	Data analysis	SMEFT fit results	
00000			

The ffV operators are already strongly bounded by Z and W pole observables

(Dawson & Giardino [1909.02000]):

ffV	C _k	95% CL, $\Lambda = 1$ TeV
$O_{\varphi\ell}^{(1)} = (\varphi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{\ell}\gamma^{\mu}\ell)$	$C^{(1)}_{arphi\ell}$	[-0.043, 0.012]
$O_{\varphi\ell}^{(3)} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \tau^{I} \varphi)(\bar{\ell} \gamma^{\mu} \tau^{I} \ell)$	$C_{\varphi\ell}^{(3)}$	[-0.012, 0.0029]
$O_{\varphi e} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e)$	C _{φe}	[-0.013, 0.0094]
$O^{(1)}_{\varphi q} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{q}\gamma^{\mu}q)$	$C_{\varphi q}^{(1)}$	[-0.027, 0.043]
$O_{\varphi q}^{(3)} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \tau^{I} \varphi) (\bar{q} \gamma^{\mu} \tau^{I} q)$	$C_{\varphi q}^{(3)}$	[-0.011, 0.014]
$O_{\varphi u} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u} \gamma^{\mu} u)$	C _{φu}	[-0.072, 0.091]
$O_{\varphi d} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{d} \gamma^{\mu} d)$	$C_{\varphi d}$	[-0.16, 0.060]
$O_{\varphi WB} = (\varphi^{\dagger} \tau^{I} \varphi) W^{I}_{\mu \nu} B^{\mu \nu}$	$C_{\varphi WB}$	[-0.0088, 0.0013]

Thus, we restrict our attention only to the operators contributing to the $\ell\ell qq$ vertex, which leaves us with seven Wilson coefficients of interest: C_{eu} , C_{ed} , $C_{\ell q}^{(1)}$, $C_{\ell q}^{(3)}$, $C_{\ell u}$, $C_{\ell d}$, and C_{qe} .

	Neutral-current DIS and SMEFT 0000●	Data analysis 000000	SMEFT fit results 00000	
د. ۱:۱	had and many continue for ()	a soll to also		

Amplitude and cross section for $\ell + q \rightarrow \ell' + q'$:

$$\mathscr{M} = \mathscr{M}_{\gamma} + \mathscr{M}_{Z} + \mathscr{M}_{\times} \Rightarrow \mathrm{d}\sigma^{\lambda_{\ell}\lambda_{q}} = \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\,\mathrm{d}Q^{2}} = \frac{1}{16\pi x^{2}s^{2}}\left|\mathscr{M}\right|^{2} + \mathscr{O}(C_{k}^{2})$$

Asymmetry definitions:

- unpolarized PV asymmetries: $A_{\rm PV} = \frac{d\sigma_{\ell}}{d\sigma_0}$
- polarized PV asymmetries: $\Delta A_{\rm PV} = \frac{\mathrm{d}\sigma_H}{\mathrm{d}\sigma_0}$
- lepton-charge asymmetries: $A_{LC} = \frac{d\sigma_0(e^+H) d\sigma_0(e^-H)}{d\sigma_0(e^+H) + d\sigma_0(e^-H)}$

where

$$d\sigma_{0} = \frac{1}{4} \sum_{q} f_{q/H} [d\sigma^{++} + d\sigma^{+-} + d\sigma^{-+} + d\sigma^{--}] : \text{unpol. } \ell + \text{unpol. } H$$

$$d\sigma_{\ell} = \frac{1}{4} \sum_{q} f_{q/H} [d\sigma^{++} + d\sigma^{+-} - d\sigma^{-+} - d\sigma^{--}] : \text{pol. } \ell + \text{unpol. } H$$

$$d\sigma_{H} = \frac{1}{4} \sum_{q} \Delta f_{q/H} [d\sigma^{++} - d\sigma^{+-} + d\sigma^{-+} - d\sigma^{--}] : \text{unpol. } \ell + \text{pol. } H$$

Neutral-current DIS and SMEFT	Data analysis ●00000	SMEFT fit results 00000	

Data sets, shown with beam energies and nominal annual luminosities:

D1	$5 \text{ GeV} \times 41 \text{ GeV} eD$, 4.4 fb^{-1}
D2	$5 \text{ GeV} \times 100 \text{ GeV} eD$, 36.8 fb ⁻¹
D3	$10 \text{ GeV} \times 100 \text{ GeV} eD, 44.8 \text{ fb}^{-1}$
D4	$10 \text{ GeV} \times 137 \text{ GeV} eD$, 100 fb^{-1}
D5	$18 \text{ GeV} \times 137 \text{ GeV} eD, \ 15.4 \text{ fb}^{-1}$
P1	$5 \text{ GeV} \times 41 \text{ GeV} ep, 4.4 \text{ fb}^{-1}$
P2	$5 \text{ GeV} \times 100 \text{ GeV}$ ep, 36.8 fb ⁻¹
P3	$10 \text{ GeV} \times 100 \text{ GeV} ep, 44.8 \text{ fb}^{-1}$
P4	$10 \text{ GeV} \times 275 \text{ GeV}$ ep, 100 fb ⁻¹
P5	$18 \text{GeV} \times 275 \text{GeV} ep, 15.4 \text{fb}^{-1}$
P6	$18 \text{ GeV} \times 275 \text{ GeV}$ ep, 100 fb ⁻¹

P6: Yellow Report reference setting [2103.05419]

Data set labels:

D, P: unpolarized PV asymmetry

 ΔD , ΔP : polarized PV asymmetry

LD, LP: lepton-charge asymmetry

Cuts on projected data:

- Q > 1 GeV to avoid nonperturbative QCD y > 0.1 to avoid bin migration and unfolding uncertainty
 - y < 0.9 to avoid high photoproduction background due to final-state hadron
 - $|\eta| < 3.5$ to restrict events in main acceptance of ECCE detector
- E' > 2 GeV to have high-purity e^- samples

Additional cuts in SMEFT analysis:

x < 0.5 to avoid *large* uncertainties from Q > 10 GeV nonperturbative QCD and nuclear dynamics

Kinematic region of the data sets ($\sqrt{s} = 70-140 \text{ GeV}, 0.1 \le y \le 0.9$):

The shaded region on the left and the red box on the right indicate the kinematic region and *good* bins used in our SMEFT analysis, respectively.

Neutral-current DIS and SMEFT	Data analysis	SMEFT fit results	
	00000		
			·

Anticipated uncertainty components:

Error type	$A_{\rm PV}$ (D, P)	$\Delta A_{\rm PV}$ (ΔD , ΔP)	$A_{\rm LC}$ (LD, LP)
statistical (NL)	$\sigma_{\text{stat}} = \frac{1}{P_{\ell}\sqrt{N}}$	$rac{P_\ell}{P_H}\sigma_{ m stat}$	$\sqrt{10}P_\ell\sigma_{\rm stat}$
statistical (HL)	$\frac{1}{\sqrt{10}}\sigma_{\text{stat}}$	$rac{1}{\sqrt{10}}rac{P_\ell}{P_H}\sigma_{ m stat}$	×
uncorrelated	1% rol	1% rol	1% rol
systematic	1 /0 101.	170 101.	1 /0 101.
fully correlated	1% rol	2% rol	×
beam polarization	1 /0 101.	270 101.	^
fully correlated	×	×	2% abs
luminosity	· ·	<u> </u>	270 003.
uncorrelated	x	×	$5\% \times (A^{\text{NLO}} - A^{\text{Born}})$
QED NLO	r r	C C	J/0 × (/1LC /1LC)
fully correlated			
PDF	· ·		· · · · · · · · · · · · · · · · · · ·

PDF sets used: NNPDF3.1 NLO and NNPDFpol1.1

- Bins on the horizontal axes are the *good* x and Q^2 bins.
- Stat error dominates in PV asymmetries in NL case.
- Systematic and beam-polarization errors become comparable to stat error in HL case.
- Luminosity error dominates in LC asymmetries.
- Stat error competes with luminosity error at high-x high- Q^2 bins.
- PDF errors are the least dominant in unpolarized PV asymmetries but become significant in the polarized case.

Kağan Şimşek (NU)

 $-\sigma_{nlo}$

	Neutral-current DIS and SMEFT 00000	Data analysis 0000●0	SMEFT fit results 00000	
Pseudo	data generation:			

$$\begin{aligned} A_{\text{pseudo},b}^{(e)} &= A_{\text{SM},b} + r_b^{(e)} \sigma_b^{\text{unc}} + {r'}^{(e)} \sigma_b^{\text{cor}} \\ b \in \text{Range}(N_{\text{bin}}), \quad e \in \text{Range}(N_{\text{exp}}), \quad N_{\text{exp}} = 10^3, \quad r_b^{(e)}, {r'}^{(e)} \sim \mathcal{N}(0,1) \\ \sigma_b^{\text{unc}} &= \sigma_{\text{stat},b} \oplus \sigma_{\text{sys},b} \qquad \sigma_b^{\text{unc}} = \sigma_{\text{stat},b} \oplus \sigma_{\text{sys},b} \oplus \sigma_{\text{nlo},b} \\ \sigma_b^{\text{cor}} &= \sigma_{\text{pol},b} \qquad \sigma_b^{\text{cor}} = \sigma_{\text{lum},b} \end{aligned}$$

SMEFT asymmetry expressions:

$$A_{\text{SMEFT},b} = A_{\text{SM},b} + \sum_{k=1}^{N_{\text{fit}}} C_k \,\delta A_{k,b} + \mathcal{O}(C_k^2), \quad N_{\text{fit}} \in \text{Range}(7)$$

 χ^2 function for each pseudoexperiment:

$$\chi^{2^{(e)}} = \sum_{b,b'=1}^{N_{\text{bin}}} [A_{\text{SMEFT},b} - A_{\text{pseudo},b}^{(e)}] H_{bb'} [A_{\text{SMEFT},b'} - A_{\text{pseudo},b'}^{(e)}]$$

Polarimetry and luminosity difference can be limiting factors.

- \Rightarrow use data itself to constrain these systematic effects
- ⇒ simultaneous fits of C_k with beam polarization, P, and luminosity difference, A_{lum} , in an attempt to obtain stronger bounds for C_k

Fits of C_k with P:

$$\chi^{2^{(e)}} = \sum_{b,b'=1}^{N_{\text{bin}}} [PA_{\text{SMEFT},b} - A_{\text{pseudo},b}^{(e)}] \left[H_{bb'} \Big|_{\sigma_{\text{pol}} \to 0} \right] [PA_{\text{SMEFT},b'} - A_{\text{pseudo},b'}^{(e)}] + \frac{(P - \bar{P})^2}{\delta P^2}$$

unpolarized PV asymmetries:
• $|\rho(C_k, P)| \gtrsim 0.7$
• 30-50% stronger bounds
• $|\rho(C_k, P)| \lesssim 0.2$

Improvement is more significant than worsening \Rightarrow include *P* in fits.

Fits of C_k with A_{lum} :

$$\chi^{2^{(e)}} = \sum_{b,b'=1}^{N_{\text{bin}}} \left[A_{\text{SMEFT},b} - A_{\text{pseudo},b}^{(e)} - A_{\text{lum}} \right] \left[H_{bb'} \Big|_{\sigma_{\text{lum}} \to 0} \right] \left[A_{\text{SMEFT},b'} - A_{\text{pseudo},b'}^{(e)} - A_{\text{lum}} \right]$$

Mild correlations, $|\rho(C_k, A_{\text{lum}})| \lesssim 0.4$, leading to 15-20% weaker bounds \Rightarrow do not include A_{lum} in fits.

In terms of the strength of bounds:

- proton > deuteron
- high-lum. low-energy (4th sets) > low-lum. high-energy (5th sets)
- unpolarized PV > polarized PV > lepton-charge
- improvement: unpolarized PV > polarized PV if $NL \rightarrow HL$

Corresponding effective UV scales: 3 TeV with NL, 4 TeV with HL

Introduction Neutral-current DIS and SMEFT Data analysis SMEFT fit results Conclusion

Compare the bounds from deuteron and proton data of unpolarized PV asymmetries to the 8-TeV 20-fb⁻¹ LHC NC DY data (Boughezal, Petriello, & Wiegand [2004.00748, 2104.03979]):

Distinct correlations: EIC fits are complementary to LHC NC DY. However, LHC fits have blind spots and exhibit flat directions, which remain even in the high-luminosity case. The EIC can resolve and constrain this parameter space strongly.

Introduction Neutral-current DIS and SMEFT Data analysis SMEFT fit results Conclusion 0 00000 00000 00000 00

Compare proton data of unpolarized PV asymmetries to the 8-TeV 20-fb⁻¹ LHC NC DY data (Boughezal, Petriello, & Wiegand [2004.00748]) when the LHC fit doesn't have a flat direction:

Distinct correlations again: EIC fits are complementary to LHC NC DY. Moreover, when the LHC fit gives a strong bound without showing a flat direction, the EIC can constrain the same parameter space even more strongly.

- Number of pseudoexperiments increases to reflect the required statistics.
- Beam polarization parameter, *P*, is not included here.
- Bounds become 25 to 40% weaker due to increased number of fitted parameters and correlations among them.
- Not significant worsening because correlations dominate statistical effect of increasing number of fitted parameters.

Compare the two-parameter fits of Wilson coefficients to the projections from a six-parameter fit:

- The *eeuu* vertex contains the combination $C_{\ell q}^{(1)} C_{\ell q}^{(3)}$ and the *eedd* vertex has $C_{\ell a}^{(1)} + C_{\ell a}^{(3)}$.
- These may lead to degeneracies and flat directions in a multi-parameter fit of Wilson coefficients.
- The EIC can resolve this part of the parameter space, imposing strong bounds.

Neutral-current DIS and SMEFT	Data analysis	SMEFT fit results	Conclusion
00000	000000	00000	•0

- We investigate the BSM potential of EIC in the model-independent SMEFT framework by focusing on semi-leptonic four-fermion operators at dimension 6 by giving a detailed accounting of uncertainties.
- We obtain bounds on Wilson coefficients from single-, double-, and even multiple-parameter fits by using techniques to simultaneously fit *P* and *A*_{lum} together with SMEFT parameters.

- We find that UV scales up to 3 TeV (or 4 TeV) can be probed with nominal (or 10× high) annual luminosity.
- We observe that the strongest bounds come from unpolarized PV asymmetries of proton.
- EIC is shown to be complementary and competitive to LHC NC DY by
 - equally or more strongly confining the Wilson coefficients with distinct correlations;
 - resolving the degeneracies observed in the LHC data.

EIC was designed as a QCD machine and it shows strong potential for BSM physics.