# Collinear phenomenology of J/psi polarization at EIC





Speaker: Luca Maxia El Università di Cagliari - INFN CA

EICUG Early Career Workshop 2022



Date: 26/05/2022

#### OUTLINE

Introduction Section A

HERA recap Section B

#### Polarization parameter predictions for EIC ( $\lambda$ and $\nu$ ) Section C

## Rotational invariant predictions for EIC Section D

#### What's next?

Section E



#### QUARKONIUM PUZZLE I

# Quarkonium formation is described via different models different ways to evaluate *short-* and *long-* distance scales

[1] Baier, Ruckl (1983) [2] Berger, Jones (1981) Color Singlet Model (CSM)

 $\sigma\left(\mathcal{Q}\right) = \hat{\sigma}\left(Q\bar{Q}\right) |R(0)|^2$ 

[5] Cho, Leibovich (1996)

[2] Fritzsch (1977) [3] Halzen (1977) Color Evaporation Model (CEM)  $\sigma(Q) = P_Q \int_{Q_{T}}^{M_T} \frac{\mathrm{d}\hat{\sigma}(m_{Q\bar{Q}})}{\mathrm{d}m_{Q\bar{Q}}} \,\mathrm{d}m_{Q\bar{Q}}$ 

[6] Nayak, Qiu, Sterman (2005)[7] Kang, Qiu, Sterman (2014)

#### Non-Relativistic QCD (NRQCD)

$$\sigma\left(\mathcal{Q}\right) = \sum_{n} \hat{\sigma}\left(Q\bar{Q}[n]\right) \left\langle 0|\mathcal{O}[n]|0\right\rangle$$

[4] Bodwin, Braaten, Lepage (1997)

#### Fragmentation Function approach (FF)

 $\sigma_{\mathcal{Q}}(p_T \gg m_{\mathcal{Q}}) = \mathrm{d}\hat{\sigma}_i(p_T/z) \otimes D_{i \to \mathcal{Q}}(z, m_{\mathcal{Q}}) \\ + \mathrm{d}\sigma_{Q\bar{Q}[c]}(P_{Q\bar{Q}[c]} = p_T/z) \otimes D_{Q\bar{Q}[c] \to \mathcal{Q}}(z, m_{\mathcal{Q}})$ 



## QUARKONIUM PUZZLE II

# Quarkonium formation is described via different models different ways to evaluate *short-* and *long-* distance scales

[1] Baier, Ruckl (1983) [2] Berger, Jones (1981) Color Singlet Model (CSM)  $\sigma (Q) = \hat{\sigma} (Q\bar{Q}) |R(0)|^2$ 



Quarkonium produced pertubatively as *color-neutral*  $Q\overline{Q}$  couple

from theoretical predictions

[4] Bodwin, Braaten, Lepage (1997)[5] Cho, Leibovich (1996)

Non-Relativistic QCD (NRQCD)



 $\sigma\left(\mathcal{Q}\right) = \sum_{n} \hat{\sigma}\left(Q\bar{Q}[n]\right) \left\langle 0|\mathcal{O}[n]|0\right\rangle$  $[n] \equiv {}^{2S+1}L_{I}^{[c]}$ 

Quarkonium produced pertubatively as colored  $Q\bar{Q}$  couple that evolves non-pertubatively

 $\langle 0 | \mathcal{O}[n] | 0 
angle$  LDME

R(0)

accessed via data fit



## $J/\psi$ DECAY PROPERTIES

 $J/\psi$  polarization is accessed by the angular distribution of its decay products



Picture taken from Faccioli presentation for "Physics at LHC" 2022

[8] Faccioli, Lourenço, Seixas, Wöhri, EPJC 69 (2010)

Electroweak and strong forces preserve *helicity* (relativistic limit)

along  $l^+l^-$  quantization direction m = 0 is forbidden

with parity conservation (equal probability for m and -m)

## ANGULAR STRUCTURE OF THE CROSS SECTION

Solid angle information enters the cross section via the following parameterization

$$\lambda_{\theta} = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}} \qquad \mu_{\theta\phi} = \frac{\sqrt{2} \operatorname{Re}[d\sigma_{10}]}{d\sigma_{11} + d\sigma_{00}} \qquad \nu_{\phi} = \frac{2d\sigma_{1-1}}{d\sigma_{11} + d\sigma_{00}}$$

```
• polarized cross section d\sigma_{\lambda\lambda'}
```

[9] Boer & Vogelsang, PRD 74 (2206)

This parameterization mimics the DY parameterization

INFŃ

#### POLARIZATION WITHIN NRQCD

In the NRQCD approach there is a double expansion:  $\alpha_s$  and v



[10] Beneke, Krämer, Vänttinen, PRD 57 (1998)

NRQCD symmetries allow interference among states with same L and S

 $d\sigma_{\lambda\lambda'} = d\sigma_{\lambda\lambda'}({}^{3}S_{1}^{[1]}) + d\sigma_{\lambda\lambda'}({}^{1}S_{0}^{[8]}) + d\sigma_{\lambda\lambda'}({}^{3}S_{1}^{[8]}) + d\sigma_{\lambda\lambda'}(\{L = 1, S = 1\}^{[8]})$ 

At high- $q_T$  evaluated via partonic subprocess  $\gamma^* + a \rightarrow c\bar{c}[n] + a$  (Collinear)



#### SPIN-QUANTIZATION FRAME



J/ $\psi$  polarization is studied in the quarkonium rest frame  $\gamma^*(q) + p(P) \rightarrow J/\psi(P_\psi) + X$ 

Different choices for the reference frame

- GJ Gottfried-Jackson frame
- CS *Collins-Soper* frame
- HX *Helicity* frame
- TF *Target* frame

Frames are related by a rotation around Y-axis

#### COLLINEAR PHENOMENOLOGY

Experiments looks to the ratio of cross section  $3 \ 1 + \lambda_{\theta} \cos^2 \theta + \mu_{\theta\phi} \sin 2\theta \cos \phi + \frac{\nu_{\phi}}{2} \sin^2 \theta \cos 2\phi$ d*N*  $d\Omega$  $4\pi$  $3 + \lambda_{\theta}$ [11] Stebel, Watanabe, PRD 104 (2021) a kinematic range, e.g.  $\lambda_{\theta} = \frac{\int \left(\frac{d\sigma_{11}}{dPS} - \frac{d\sigma_{00}}{dPS}\right) dPS}{\int \left(\frac{d\sigma_{11}}{dPS} + \frac{d\sigma_{00}}{dPS}\right) dPS}$ angular parameter evaluated over a kinematic range, e.g.  $\lambda_{\theta}$ Next: predictions in CSM and NRQCD C12 includes polarization data [11] Chao, Ma, Shao, Wang, Zhang, PRL 108 (2012) G13 tested on polarization data [12] Gong, Wan, Wang, Zhang, PRL 110 (2013) includes low- $P_T$ **BK11** [13] Butenschoen & Kniehl, PRD 84 (2011) photoproduction data



Section A 7/18

#### HERA UNPOLARIZED DATA

[14] Adloff et al. (H1 Collaboration), EPJ C 25 (2002)

[15] Kniehl & Zwirner, NPB 621 (2002)

Data from HERA collaboration

Theoretical predictions obtained by Kniehl-Zwirner



 $P_T$  data show a general better agreement with NRQCD predictions

z (multiplicity) data show a general better agreement with CSM predictions

#### HERA POLARIZED DATA

[14] Adloff et al. (H1 Collaboration), EPJ C 25 (2002)

 $2 < Q^2 < 100 \text{ GeV}^2$ 

#### Data from HERA collaboration

INFŃ

[15] Yuan & Chao, PRD 63 (2001)

From Yuan-Chao paper

ep collisions (E<sub>ep</sub>=300GeV, 40GeV<W<sub>yp</sub><180GeV)



Luca Maxia (Università di Cagliari - INFN CA)



Luca Maxia (Università di Cagliari - INFN CA)

Section C 10/18



Luca Maxia (Università di Cagliari - INFN CA)

Section C 10/18



- Unpolarized cross section has a flat behaviour
- Relatively high values
- Not much difference between models and sets
- High-z behaviour interest



INFŃ

- Unpolarized cross section decrises with  $P_T$
- Different behaviour between NRQCD and CSM predictions





INFŃ

Luca Maxia (Università di Cagliari - INFN CA)

Section C 10/18



Luca Maxia (Università di Cagliari - INFN CA)

INFN

Section C 11/18



Luca Maxia (Università di Cagliari - INFN CA)

INFN

Section C 12/18



Luca Maxia (Università di Cagliari - INFN CA)

INFŇ



Section C 11/18

INFŃ

#### Polarization at EIC ( $\nu@140GeV$ )



Luca Maxia (Università di Cagliari - INFN CA)

INFN

Section C 12/18

#### EIC ROTATIONAL INVARIANTS I

Rotation around Y-axis from frame A to B mixes up the angular parameters

Simpler invariants are linear in both  $\lambda_{\theta}$  and  $\nu_{\theta\phi}$ 

[8] Faccioli, Lourenço, Seixas, Wöhri, EPJC 69 (2010)



• Relevant theoretical tools

INFŃ

Notice that: LT-rel. is a consequence of the qqV coupling

• Check for experimental consistence

#### EIC ROTATIONAL INVARIANT PLOT I



Section D 14/18

Luca Maxia (Università di Cagliari - INFN CA)

INFN

#### EIC ROTATIONAL INVARIANTS II

# Combination of all parameters $\lambda_{\theta}$ , $\nu_{\theta\phi}$ , $\mu_{\theta\phi}$ [21] Palestini, PRD 83 (2011) can identify other types of rotational invariant quantity

[22] Peng, Boer, Chang, McClellan, Teryaev, PhysLettB 789 (2019)

$$\tilde{\lambda}' = \frac{(\lambda_{\theta} - \nu_{\theta\phi}/2)^2 + 4\mu_{\theta\phi}^2}{(3 + \lambda_{\theta})^2}$$

(hard to measure with precision)

# Can provide additional constrains on both experimental and theoretical points of view



#### EIC ROTATIONAL INVARIANT PLOT II



Section D 16/18

Luca Maxia (Università di Cagliari - INFN CA)

INFŇ

#### NEXT

Focus of the talk were the LO polarization prediction in the collinear framework

#### Polarized (and unpolarized) data at EIC for TMD studies

(see F. G. Celiberto talk on Thursday)

• Access to linearly polarized gluon distribution  $h_1^{g\perp}$  via  $v_{\phi}$  parameter

[23] D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022)

• Impact of *TMD-shape functions* 

[24] Echevarria, JHEP (2019)

[25] Fleming, Makris, Mehen, JHEP 04 (2020)

[26] Boer, D'Alesio, Murgia, Pisano, Taels, JHEP 09 (2020)

[23] D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022)



Section E 17/18

#### CONCLUSIONS

Importance of polarization J/ $\psi$  state analysis

Importance of **full** polarization measurements to achieve a complete picture

EIC luminosity could be useful in a  $P_T$  analysis

Studying polarization in different energy/Q-bins

Non-trival behaviour of rotational invariant quantities

Polarization data in the TMD region can disclose the role of TMDShF



## Thanks for the attention





#### TMD PRELIMINARY PREDICTIONS



Luca Maxia (Università di Cagliari - INFN CA)

INFN

#0# \*490 Section E 14/15

#### TMD PRELIMINARY PREDICTIONS



Luca Maxia (Università di Cagliari - INFN CA)

Section E 14/15

#### TMD PRELIMINARY PREDICTIONS





Luca Maxia (Università di Cagliari - INFN CA)

Section C 14/15