Far Forward Region Calorimetry at EIC

Sasha Bylinkin

The University of Bergen

On behalf of the Detector-1 Collaboration

EICUG Early Career Workshop, July $24^{\text {th }}, 2022$

Outline

- Introduction and motivation
- Far Forward Calorimeters
- B0 Detector
- ZDC
- Physics studies examples
- Summary

Far-forward physics at EIC
e+p DVCS events with proton tagging.

Saturation (coherent/incoherent J/ ψ production)

e+d exclusive J/Psi and DIS events with proton or neutron tagging

Meson structure:
$>$ with neutron tagging $\left(\mathrm{ep} \rightarrow(\pi) \rightarrow \mathrm{e}^{\prime} \mathrm{nX}\right)$
$>$ Lambda decays ($\Lambda \rightarrow \mathrm{p} \pi^{-}$and $\Lambda \rightarrow \mathrm{n} \pi^{0}$)

e+He3 with spectator proton tagging.
e+He4 coherent He4 tagging.
e+Au events with neutron tagging to veto breakup and photon acceptance.

- The various physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities(>4.5).
- Different final states require different detector subsystem for detection.
- Different collision systems provide unique challenges due to magnetic rigidity difference between beam and final-state particles.
- Placing far-forward detectors uniquely challenging due to presence of machine components, space constraints, apertures, etc

Far Forward Region $(\eta>4.5)$
 Bo Silicon Tracker and Preshower

Central Detector

- Central detector spans 9 meters and is machine-component free.
- Hadron-going and electron-going directions fully instrumented.
- Hadron and electron beam cross with an angle of 25 mrad .

EIC Far-Forward region

BO Silicon Tracker and Preshower

Detector	(x, z) Position $[\mathrm{m}]$	Dimensions	$\theta[\mathrm{mrad}]$	Notes	Acceptance
ZDC	$(-0.96,37.5)$	$(60 \mathrm{~cm}, 60 \mathrm{~cm}, 1.62 \mathrm{~m})$	$\theta<5.5$	$\sim 4.0 \mathrm{mrad}$ at $\phi=\pi$	$\eta>6.0$
Roman Pots (2 stations)	$(-0.83,26.0)(-0.92,28.0)$	$(30 \mathrm{~cm}, 10 \mathrm{~cm})$	$0.0<\theta<5.5$	$10 \sigma \mathrm{cut}$.	$\eta>6.0$
Off-Momentum Detector	$(-1.62,34.5),(-1.71,36.5)$	$(50 \mathrm{~cm}, 35 \mathrm{~cm})$	$0.0<\theta<5.0$	$0.4<x_{L}<0.6$	$\eta>6.0$
B0 Trackers and Calorimeter	$(x=-0.15,5.8<\mathrm{z}<7.0)$	$(32 \mathrm{~cm}, 38 \mathrm{~m})$	$6.0<\theta<22.5$	$\sim 20 \mathrm{mrad}$ at $\phi=0$	$4.6>\eta>5.9$

Challenges to B0 Tracking and Calorimeter Systems

0. The whole detector is located inside a 20 cm radius magnet
1. The B 0 is the most challenging EIC magnet: it needs to provide both field for the proton/ion beam and no field for the electron beam, in limited space.
2. The acceptance along z changes due to the crossing angle (25 mrad) as the B 0 is aligned with the electron beam.
3. Access only possible from IP side, and no access from the hadron downstream side as that region is integrated with the cold mass.
4. Operation of the B0 Tracker and Calorimeter very close to the beam.

Will the calorimeter impact the tracking performance?

B0 Tracker and Calorimeter Design

Four Si tracking planes occupy 1 m of 120 cm 2 mm of Cu after each tracking layer to model cooling and readout

They are followed by $10 \mathrm{~cm} \mathrm{PbWO}{ }_{4}$ Calorimeter $2 * 2 \mathrm{~cm}$ granularity

7 cm at the back of the Calorimeter are assumed for its readout

Oval shape of the cut off for the hadron beam:

- Account for the 25 mrad crossing angle
- Allows to increase the acceptance at large η

Geant4 Simulation:

B0 Tracker

B0 dipole magnet field is added to the field map to be passed to the Kallman filter.

The achieved resolution is below 5% for all p_{T} in the realistic design assuming 2 mm dead layers for readout

B0 calorimeter acceptance

B0 calorimeter resolution

Effect of the presence of dead material (for cooling and readout) after each tracking plane is estimated.

The photon energy resolution is found to be below 7\% for the studied kinematic region.

Zero-Degree Calorimeter

High resolution HCAL + EMCAL for detecting neutral forward-going particles (neutrons and photons)

- HCAL requires $\frac{\Delta E}{E} \sim \frac{50 \%}{\sqrt{E}} \oplus 5 \%$ and $\sigma_{\theta} \sim \frac{3 \mathrm{mrad}}{\sqrt{E}}$, or better.
- ALICE FoCal assumptions used for studies thus far (EIC R\&D group started last summer).
- Acceptance limited by bore of magnet where the neutron/photon cone exits ($0.0<\theta<4.5 \mathrm{mrad}$).

64 Layers

- Zero Degree Calorimeter (improved ALICE design):
- Dimension: 60 cm x 60 cm x 168 cm
- 30 m from IR
- Detect spectator nucleon
- Acceptance: $+4.5 \mathrm{mrad},-5.5 \mathrm{mrad}$
- Position resolution $\sim 1.3 \mathrm{~mm}$ at 40 GeV
- Full reconstruction of photons (EMCAL) and neutrons (HCAL)
$>$ Sufficient calorimeter depth (radiation lengths, X_{0} for photons/electrons; nuclear interaction lengths, λ_{I} for neutrons/hadrons)
- Required for good energy resolution.

Granularity needed for proper reconstruction of shower.

- Finding the center of the shower needed to provide angular resolution to get neutron transverse momentum!

Zero-Degree Calorimeter
 Photon energy resolution

*Beam pipe effects are not included in performance studies

B0 and ZDC applications: Exclusive VM production

Both B0 (PS or EMCal design) and ZDC can be used to veto events with forward going photons

Measurement of the coherent spectrum down to the $3^{\text {rd }}$ diffractive minimum requires rejection of incoherent events.

Nuclear breakup in incoherent events produces soft photons ($\sim 300 \mathrm{MeV}$) in the forward direction from the de-excitation of some of the larger nuclear fragments.

B0 and ZDC applications: u-channel DVCS

- For studies of u-Channel (Backward-angle) exclusive electroproduction, need capability to reconstruct photons from decays.
- Physics beyond the EIC white paper!
- Would require full B0 EMCAL with high granularity and energy resolution.
- Longitudinal space in B0pf magnet limited.
- Would be a great candidate for an upgrade or for IP8!

Deeply Virtual Compton Scattering

DVCS

Bethe-Heitler

u-Channel Meson Production Setup

GPD: It is extracted predominantly based in the forward angle observables.

TDA: meson-nucleon Transition Distribution Amplitude (TDA) only accessible through backward (u-channel) meson production

B0 and ZDC applications: u-channel DVCS

Deeply Virtual Compton Scattering

Enhanced acceptance and resolution with BO calorimeter

*Studies by Wenliang (Bill) Li

Summary

- Detectors in the Far Forward region are important for various physics processes.
- Combined usage of ZDC and B0 detectors significantly increases the photon detection efficiency.
- Detecting photons in this region is essential for the measurements of u-DVCS and coherent VM production.

Thank you very much for your attention!

B0 Design

B0 Design

