Istituto Nazionale di Fisica Nucleare

INFN

MER DU SUD-

EIC Users Group Early Career Workshop

HAS QCD

HADRONIC STRUCTURE AND QUANTUM CHROMODYNAMICS

MAPTMD22-

A new extraction of unpolarized TMDs through global fits

MAP Collaboration Matteo Cerutti

IDIONALI

ORJENTALIS

HOLLAND

DI PAVIA

July 24th

intra litim

Running coupling - QCD

It depends on the energy scale of the process

CMS Collaboration, Eur.Phys.J. C 75 (2015)

Running coupling - QCD

It depends on the energy scale of the process

CMS Collaboration, Eur.Phys.J. C 75 (2015)

Perturbative Physics

Running coupling - QCD

It depends on the energy scale of the process

CMS Collaboration, Eur.Phys.J. C 75 (2015)

Non-Perturbative Physics Color confinement

u

U

Perturbative Physics

Map of the internal structure of hadrons

Map of the internal structure of hadrons

Parton Distribution Functions (PDFs)

Map of the internal structure of hadrons

Parton Distribution Functions (PDFs)

Hadronization process

Map of the internal structure of hadrons

Parton Distribution Functions (PDFs)

Hadronization process

Fragmentation Functions (FFs)

I S Transformer and the same

Parton Distribution Functions (PDFs)

1D maps

Collinear framework

The only nonzero component of the quark momentum is the one in the same direction of the parent hadron

x: fraction of longitudinal momentum of the parent hadron carried by the internal quark

Parton Distribution Functions (PDFs)

1D maps

Collinear framework

Quark Polarisation

		U	L	Т
.lo ^c	U	$f_1(x)$		
leon F	L			
Nuc	Т			

 $f_1(x)$

probability density of finding an unpolarised quark (gluon) carrying a fraction x of the unpolarised hadron momentum

Mulders-Tangerman, NPB 461 (1996) Boer-Mulders, PRD 57 (1998)

Parton Distribution Functions (PDFs)

1D maps

Collinear framework

Quark Polarisation

		U	L	Т
.lo ^c	U	$f_1(x)$		
leon F	L		$g_1(x)$	
Nuc	Т			$h_1(x)$

 $f_1(x)$

probability density of finding an unpolarised quark (gluon) carrying a fraction x of the unpolarised hadron momentum

Mulders-Tangerman, NPB 461 (1996) Boer-Mulders, PRD 57 (1998)

Unexplained observations

1D maps

We <u>cannot</u> explain, for e.g. :

Unexplained observations

1D maps

We <u>cannot</u> explain, for e.g. :

Single Spin Asymmetries (SSA)

J. Adams et al., P.R.L. 92 (2004) 171801

Violation of the Lam-Tung sum rule

J. S. Conway et al., P.R. D39 (1989)

J. Ashman et al., P.L. B206 (1988)

Unexplained observations

1D maps

We <u>cannot</u> explain, for e.g. :

Single Spin Asymmetries (SSA)

J. Adams et al., P.R.L. 92 (2004) 171801

Violation of the Lam-Tung sum rule

J. S. Conway et al., P.R. D39 (1989)

J. Ashman et al., P.L. B206 (1988)

Transverse-Momentum-Dependent PDFs (TMDs)

3D maps

Non-collinear framework

The quark momentum is characterised by an intrinsic component transverse to the parent hadron momentum

 \vec{k}_T = intrinsic (non-perturbative) transverse momentum of the quark

	U	L	Т
U			
L			
Т			

Nucleon Pol.

	U	L	Т
U	f_1		
L		g_1	
Т			h_1

Nucleon Pol.

Nucleon Pol.

Time-reversal odd Time-reversal even

Time-reversal odd Time-reversal even

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

If $Q^2 \gg M^2$

$d\sigma \sim {\rm perturbative} \otimes {\rm nonperturbative}$

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

If $Q^2 \gg M^2$ and $Q^2 \gg P_{hT}^2$

 $d\sigma \sim \text{perturbative} \otimes \text{nonperturbative}$ Elementary cross section TMD partonic densities

Factorization theorems for several processes:

J. Collins, "Foundation of Perturbative QCD" Collins, Metz, PRL 93 (2004) Rogers, Mulders, PRD81 (2010)

Factorization theorems for several processes:

J. Collins, "Foundation of Perturbative QCD" Collins, Metz, PRL 93 (2004) Rogers, Mulders, PRD81 (2010)

Factorization theorems for several processes:

SIDIS • $l+N \rightarrow l'+h+X$ • $e^+ + e^- \to h_1 + h_2 + X$ DIA • $H_1 + H_2 \rightarrow l^- + l^+ + X$ **Drell Yan** • $H_1 + H_2 \rightarrow W/Z + X$ Drell Yan $H_1 + H_2 \rightarrow jet + X$

 $H_1 + H_2 \rightarrow heavy quark + X$

J. Collins, "Foundation of Perturbative QCD" Collins, Metz, PRL 93 (2004) Rogers, Mulders, PRD81 (2010)

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

How to express a TMD distribution? $\tilde{F}_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x; \mu_b)] e^{S_{pert}(\mu_b^2, Q^2)} e^{S_{NP}(b_T, Q^2; \lambda)} \tilde{F}_{a, NP}(x, b_T^2; \lambda')$

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

How to express a TMD distribution?

(perturbative calc.)

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

$$\begin{split} \tilde{F}_{a}(x, b_{T}^{2}; Q, Q^{2}) &= [C_{a/b}(x, b_{T}^{2}, \mu_{b}) \otimes F_{a}(x; \mu_{b})] e^{S_{\text{pert}}(\mu_{b}^{2}, Q^{2})} e^{S_{\text{NP}}(b_{T}, Q^{2}; \lambda)} \tilde{F}_{a, NP}(x, b_{T}^{2}; \lambda') \\ \end{split}$$

$$\begin{split} \text{Matching coefficient} (\text{Pertubative calc.}) & \text{Collinear PDF} (\text{previous fit}) & \text{Evolution} (\text{perturbative calc.}) \end{split}$$

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

$$\tilde{F}_{a}(x, b_{T}^{2}; Q, Q^{2}) = \begin{bmatrix} C_{a/b}(x, b_{T}^{2}, \mu_{b}) \otimes F_{a}(x; \mu_{b}) \end{bmatrix} e^{S_{\text{pert}}(\mu_{b}^{2}, Q^{2})} e^{S_{\text{NP}}(b_{T}, Q^{2}; \lambda)} \tilde{F}_{a, NP}(x, b_{T}^{2}; \lambda')$$

$$Matching \text{ coefficient} (Pertubative calc.) \\ (Pertubative calc.) \\ (previous fit) \\ (pr$$

Fourier transform in b_T-space

$$\tilde{F}_{a}(x, b_{T}^{2}; \mu, \zeta) = \int \frac{d^{2}k_{T}}{(2\pi)^{2}} e^{ib_{T} \cdot k_{T}} F_{a}(x, k_{T}^{2}; \mu, \zeta)$$

$$\tilde{F}_{a}(x, b_{T}^{2}; Q, Q^{2}) = \begin{bmatrix} C_{a/b}(x, b_{T}^{2}, \mu_{b}) \otimes F_{a}(x) \\ \downarrow & \downarrow & \downarrow \\ \end{bmatrix}$$
Matching coefficient (Pertubative calc.) Collinear PDF (previous fit) (pertubative calc.) (previous fit) (pertubative calc.) (pert

Accuracy of calculation

 $\tilde{F}_{a}(x, b_{T}^{2}; Q, Q^{2}) = [C_{a/b}(x, b_{T}^{2}, \mu_{b}) \otimes F_{a}(x; \mu_{b})]e^{S_{\text{pert}}(\mu_{b}^{2}, Q^{2})}e^{S_{\text{NP}}(b_{T}, Q^{2}; \lambda)}\tilde{F}_{a, NP}(x, b_{T}^{2}; \lambda')$

$\tilde{F}_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x;$

Accuracy of calculation

$$[\mu_b] e^{S_{\text{pert}}(\mu_b^2, Q^2)} e^{S_{\text{NP}}(b_T, Q^2; \lambda)} \tilde{F}_{a, NP}(x, b_T^2; \lambda')$$

$F_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x;$

Accuracy of calculation

$$[\mu_b] e^{S_{\text{pert}}(\mu_b^2, Q^2)} e^{S_{\text{NP}}(b_T, Q^2; \lambda)} \tilde{F}_{a, NP}(x, b_T^2; \lambda')$$

$F_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x;$

- $S_{\text{pert}}(\mu_b, Q) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+\lfloor k/2 \rfloor}^{\infty} \left(\frac{\alpha_S(Q)}{4\pi} \right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)}$

Accuracy Sudakov form factor

Accuracy of calculation

$$[\mu_b)]e^{S_{\text{pert}}(\mu_b^2,Q^2)}e^{S_{\text{NP}}(b_T,Q^2;\lambda)}\tilde{F}_{a,NP}(x,b_T^2;\lambda')$$

Matching coefficient

$\tilde{F}_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x;$

$$-S_{\text{pert}}(\mu_b, Q) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+\lfloor k/2 \rfloor}^{\infty} \left(\frac{\alpha_S(Q)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)} \qquad L = \ln\left(\frac{Q^2}{\mu_b^2}\right)^n L^{2n-k} R^{(n,2n-k)}$$

Accuracy

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

Accuracy of calculation

$$[\mu_b)]e^{S_{\text{pert}}(\mu_b^2,Q^2)}e^{S_{\text{NP}}(b_T,Q^2;\lambda)}\tilde{F}_{a,NP}(x,b_T^2;\lambda')$$

Matching coefficient

 $O(\alpha_S^0)$

$\tilde{F}_a(x, b_T^2; Q, Q^2) = [C_{a/b}(x, b_T^2, \mu_b) \otimes F_a(x;$

$$-S_{\text{pert}}(\mu_b, Q) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+\lfloor k/2 \rfloor}^{\infty} \left(\frac{\alpha_S(Q)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)} \qquad L = \ln\left(\frac{Q^2}{\mu_b^2}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)}$$

Accuracy

NLL

Sudakov form factor

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right)$$

$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1}$$

Accuracy of calculation

$$\mu_b)]e^{S_{\text{pert}}(\mu_b^2,Q^2)}e^{S_{\text{NP}}(b_T,Q^2;\lambda)}\tilde{F}_{a,NP}(x,b_T^2;\lambda')$$

Matching coefficient

 $O(\alpha_S^0)$

 $O(\alpha_S^0)$

$$\left(\frac{Q^2}{\mu_b^2}\right)$$

Recent Global Analyses

	Accuracy	SIDIS	DY	Z production	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL				8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL				1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	X			353	1.02

Simultaneously extraction of unpolarized TMD PDFs and FFs

Simultaneously extraction of unpolarized TMD PDFs and FFs

Our work in the last two years

SIDIS + Drell Yan

Integrated variables \mathbf{i}

Our work in the last two years

Simultaneously extraction of unpolarized TMD PDFs and FFs

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

https://github.com/MapCollaboration

- Integrated variables \mathbf{i}
- Up to N²LL/N³LL \bigcirc

Our work in the last two years

Simultaneously extraction of unpolarized TMD PDFs and FFs

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

If you instead want to download a specific tag:

https://github.com/MapCollaboration

A new Global Fit: MAPTMD22

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 arXiv:1703.10157	NLL				8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL ⁻				1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	X			353	1.02
MAPTMD22	N ³ LL				2031	1.06

Bacchetta, Bertone, Bissolotti, Bozzi, MC, Piacenza, Radici, Signori <u>arXiv: 2206.07598</u>

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

 $9 \leq Q \leq 11 \text{ GeV}$ excluded (Υ resonance)

$$q_T|_{\rm max} = 0.2Q$$

484 experimental points

MAPTMD22 – Included Dataset

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

 $9 \leq Q \leq 11 \text{ GeV}$ excluded (Υ resonance)

$$q_T|_{\rm max} = 0.2Q$$

484 experimental points

MAPTMD22 – Included Dataset

HERMES data

COMPASS data

Q > 1.3 GeV

0.2 < z < 0.7

 $P_{hT}|_{max} = \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

1547 experimental points

484 experimental points

Total: 2031 fitted experimental points

MAPTMD22 – Included Dataset

SIDIS multiplicities at NLL

MAPTMD22 — Normalization of SIDIS

SIDIS multiplicities at NLL

MAPTMD22 — Normalization of SIDIS

High-Energy Drell-Yan at NLL

High-Energy Drell-Yan beyond NLL

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, <u>arXiv:1912.07550</u>

MAPTMD22 — Normalization of SIDIS

<u>High-Energy Drell-Yan beyond NLL</u>

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, <u>arXiv:1912.07550</u>

MAPTMD22 — Normalization of SIDIS

<u>High-Energy Drell-Yan beyond NLL</u>

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, <u>arXiv:1912.07550</u>

MAPTMD22 — Normalization of SIDIS

<u>High-Energy Drell-Yan beyond NLL</u>

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, <u>arXiv:1912.07550</u>

The description considerably worsens at higher orders!!

MAPTMD22 — Normalization of SIDIS

<u>High-Energy Drell-Yan beyond NLL</u>

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, <u>arXiv:1912.07550</u>

COMPASS multiplicities (one of many bins)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ⊾ 0.2 0.3 0.4

Data/Prediction

J.O. Gonzalez-Hernandez, PoS DIS2019 (2019) 176

COMPASS multiplicities (one of many bins)

The discrepancy amounts to an almost constant factor!!

J.O. Gonzalez-Hernandez, PoS DIS2019 (2019) 176

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

SIDIS multiplicity $M(x, z, P_{hT}, Q) =$

Collinear SIDIS cross section

 $\frac{d\sigma}{dxdQdz}$

 $\mathbf{0.7}$

 $\mathbf{0.5}$

0.3

 $egin{array}{c} y \\ 0.2 \end{array}$

0.15

0.1

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

No problems of normalization!!

SIDIS multiplicity $M(x, z, P_{hT}, Q) =$

Collinear SIDIS cross section $\frac{d\sigma}{dxdQdz}$

Normalization of prediction such that 0.7

$$\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} = \frac{d\sigma}{dx dQ dz}$$
0.5
0.3

 $egin{array}{c} y \ 0.2 \end{array}$

0.15

0.1

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|_{hT}$

No problems of normalization!!

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) =$$

Collinear SIDIS cross section $\frac{d\sigma}{dxdQdz}$

Normalization of prediction such that 0.7

$$w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$$

$$y$$

$$0.5$$

0.15

0.1

 $= \frac{d\sigma}{dx dQ dz dP_{hT}} /$ $\frac{d\sigma}{dxdQ}$

No problems of normalization!!

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) =$$

Collinear SIDIS cross section $\frac{d\sigma}{dxdQdz}$

Normalization of prediction such that 0.7

$$w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \Big/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} \Big| \begin{bmatrix} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ y \\ 0.8 \\ y \\ 0.8$$

0.1

 $= \frac{d\sigma}{dx dQ dz dP_{hT}} /$ $\frac{d\sigma}{dxdQ}$

No problems of normalization!!

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) =$$

Collinear SIDIS cross section $\frac{d\sigma}{dxdQdz}$

Normalization of prediction such that 0.7

$$w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \Big/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}} \Big| \begin{bmatrix} 0.8 \\ 0.8 \\ 0.8 \end{bmatrix} \\ M(x, z, P_{hT}, Q) = w(x, z, Q) \frac{d\sigma}{dx dQ dz dP_{hT}} \Big/ \frac{d\sigma}{dx dQ} \Big| \begin{bmatrix} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{bmatrix} \\ \begin{bmatrix} y \\ 0.2 \\ 0.18 \end{bmatrix} \\ 0.18 \end{bmatrix}$$

Independent of the fitting parameters!!

 $= \frac{d\sigma}{dx dQ dz dP_{hT}} /$ $\frac{d\sigma}{dxdQ}$

No problems of normalization!!

MAPTMD22 — Results of the fit $\chi^2/N_{data} = 1.06$

HERMES

MAPTMD22 — Results of the fit $\chi^2/N_{data} = 1.06$

Visualisation of TMD PDFs

MAPTMD22 — Output of the fit

Visualisation of TMD PDFs

MAPTMD22 — Output of the fit

MAPTMD22 — Output of the fit

Collins-Soper kernel

Kernel of the rapidity evolution equation

$$\frac{\partial \ln \hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$$

 $K(b_T, \mu_b) = K_{\text{pert}} + g_K(b_T)$

MAPTMD22 — Output of the fit

Collins-Soper kernel

Kernel of the rapidity evolution equation

$$\frac{\partial \ln \hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$$

$$K(b_T, \mu_b) = K_{\text{pert}} + g_K(b_T)$$

perturbatively calculable

MAPTMD22 — Output of the fit

Collins-Soper kernel

Kernel of the rapidity evolution equation

$$\frac{\partial \ln \hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$$

$$K(b_T, \mu_b) = K_{pert} + g_K(b_T)$$

to be fitted

perturbatively calculable

MAPTMD22 — Output of the fit

Collins-Soper kernel

Collins-Soper kernel

Kernel of the rapidity evolution equation

$$\frac{\partial \ln \hat{f}_1(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = K(b_T, \mu)$$

$$K(b_T, \mu_b) = K_{pert} + g_K(b_T)$$

to be fitted

perturbatively calculable

MAPTMD22 — Output of the fit

Martinez, Vladimirov, <u>arXiv:2206.01105</u>

Outlook and Conclusions

To build a map of the internal structure of hadrons we need to study TMDs

Outlook and Conclusions

Ş

Present...

Ş

MAPTMD22 is the most recent extraction of TMDs through global fits

To build a map of the internal structure of hadrons we need to study TMDs

MAPTMD22

Outlook and Conclusions

Ş

Present...

Ş

Ş

MAPTMD22 is the most recent extraction of TMDs through global fits

Future...

The EIC machine will provide us a large amount of experimental data which will allow us to better constrain TMDs

To build a map of the internal structure of hadrons we need to study TMDs

MAPTMD22 + EIC

