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Semi-inclusive deep inelastic scattering at the EIC

e

SIDIS: virtual photon exchanged with parton, measure
scattered lepton and single/di-hadrons

SIDIS cross-section gives access to parton distribution functions

and fragmentation functions
S. Diehl, PRL

* Extra degree of freedom from hadron vital for studying TMD-
PDFs, TMD-FFs

Azimuthal angle and transverse momentum defined around
virtual photon axis in target COM frame

* Cross-section a function of (x, Y, z, pr, ®n, ©)

Many SIDIS observable projections made for ATHENA and ECCE
proposals:

* A, with kaons, gluon saturation with dihadrons, Sivers
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SIDIS observables and coverage at the EIC
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In addition to inclusive DIS
reconstruction, rely on wide PID
coverage (flavor separation),
precise hadron tracking, virtual
photon reconstruction




SIDIS kinematic reconstruction

e SIDIS variables: reliant on reconstruction of virtual photon four-momentum, typically determined using
g=1-1

e Reliable for larger vy, but begins to fail for y <~0.05

Low-y: region of interest for TMDs, and important for evolution
studies
e To utilize full EIC kinematic reach for SIDIS studies, need

ATHENA full simulation:

pT mean relative error, ele. method

improved methods to determine SIDIS variables
e CC-would require first method without electron
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Reconstruction with hadronic final state

Through conservation of momentum and high-Q2
energy, hadronic final state (HFS) should

also contain enough information to
constrain g

HFS methods developed at HERA for
inclusive DIS variables for regions in which
electron method less reliable
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Methods utilizing hadronic final state should
be more robust with respect to first-order Hadion

radiative corrections Central Endcap
Detector

* Impact of radiative effects expected to be large
for SIDIS observables at EIC
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Reconstruction with hadronic final state

* Method used in EIC YR and ATHENA proposal to reconstruct virtual photon using hadronic final state (HFS)
* xandy components - summed HFS momentum
e zand t components - solved for algebraically using
p-q
Lt et )
p.l Q" =—¢

and DIS variables from any DIS reconstruction method

Y

i) Leptonic variables q=q =ks— ki, yi=pi.(k1 — k2)/p1.k
it) Hadronic variables [81] q=qn=ps—Dp1, Y =Dp1-(p2—p1)/p1-ks
i) Jacquet-Blondel variables [82] Q35 = (p2.1)%/(1 —ysB), yis=2/(2E(k,))
Y= (En—pn) Prog. Part. Nucl. Phys. 2013, Bliimlein

iv) Mized variables [81] q9=q,Ym = YJB (k) (6(ks)/2)

9 4F k2 200829k2 2

v) Double angle method [83| DA = §5in2(0(k2)/2) + siq(ﬁ(kg)/Q/ cos(6(kz)/2) tan(6(p2)/2)’
sin(0(k3)/2)

Ypa =1 = SoO0R) 72) T cos(0(k,) /2) tan(0(p;) /2)”

* +solution in quadratic equation found to always be closer to MC truth

* Resolution improved if this is carried out in head-on frame, then transformed to lab frame

Duke e Large crossing angle needed for EIC




ATHENA full simulation SIDIS resolution, py

pT mean relative error, ele. method

Transverse momentum (w.r.t. q),
10x275, pi+, z > 0.2:

DA, hybrid method ->
pT resolution more
acceptable at low y
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Potential for CC
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ATHENA full simulation SIDIS resolution,

¢H mean error, ele. method

ATHENA full simulation, 10x275,
pi+,z>0.2
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Angular resolution still

poor at low-y with all
methods

¢H mean error, JB method
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Machine learning reconstruction

e Based on hybrid HFS-electron SIDIS reconstruction, using ML to combine
information from both to reconstruct g

* Potential to correct overall HFS and electron momentum and to more reliably reconstruct zand t
components than exact formula

ML models used for DIS reconstruction have been shown to be able to naturally account for
radiative effects

* (arXiv:2108.11638 Diefenthaler, Farhat, Verbytskyi, Xu, as well as NIM-A 1025 (2022)
166164, Arratia, Britzger, Long, Nachman)

e Currently utilizing graph-like neural network architectures designed for jet
reconstruction
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Particle flow networks

* Particle flow networks (PFN) developed by Komiske et al., Particles
(JHEP 01 (2019) 121, Komiske, Metodiev, Thaler)

* Accepts unordered set of particles
* Particles -> input to layers ©
 Summed over to created latent space of £ variables

* Global features of event concatenated with latent space
variables

* Latent space variables and global features fed to layers F,
produce final output

* Designed to be general purpose, universal approximator on
sets of particles

Duke

Observable

Per—Particle Representation Event Representation

Latent Space

Energy/Particle Flow Network

JHEP 01 (2019) 121




ML SIDIS model and training

 Model combining electron and HFS:
e Particle features for PFN: momentum, energy, n, ¢ in lab frame
* Event-wide features: electron four momentum, DIS variables from JB, DA, electron methods

e DIS variables will eventually be replaced with final reconstructed Q2 and x likely using another ML
method, but in this study statistics for training were limited

e Target: MC virtual photon four-momentum in lab frame

* Training sample: ATHENA full simulation
* Version of dd4hep ATHENA full sim. used for detector proposal
 Still some features missing, e.g. proper scattered electron ID
e HFS at the level of reconstructed particles
* 10 GeV electron beam, 275 GeV proton beam, crossing angle -25 mrad
* Trained on 3 million events with Q2 > 1 GeV?, 2 million with Q% > 10 GeV?

* 1 million Q%2 > 1 GeV? events for validation

Duke




ATHENA full simulation, PT — PT.true

10x275, pi+, z>0.2 PT,true

pT mean relative error, ele. method ¢, mean error, ele. method

¢H 5 ¢H,true

Electron
method

PFN able to
correct electron

pT mean relative error, NN ¢H mean error, NN method in almost
all of x-Q2

Neural
network
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ATHENA full simulation,

10x275, pi+, z>0.2
Reconstruction as a
function of y

Mean:

e Comparison with other
HFS/hybrid methods vs

ytrue

e NN clearly best
performance for low y,
and at least equaling
electron method for

large y
RMS:
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ATHENA full simulation

mean, pr absolute relative error

mean, z absolute relative error

* Neural network

+ ele. method
DA method
JB method
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ATHENA full simulation,
10x275, pi+, z>0.2
Reconstruction as a

function of pT,y > 0.1

Mean:

e Comparison with other
HFS methods vs true pT
e Machine learning

method equals/slightly
outperforms electron
method for large y
(expected)
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ATHENA full simulation, y > 0.1
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ATHENA full simulation,
10x275, pi+, z>0.2
Reconstruction as a

function of pT,y < 0.1

Mean:

e Comparison with ele.,
other HFS methods vs
true pT

e At low-y, network is
able to reliably
reconstruct kinematics
even at very low pT
(w.r.t virtual photon)

e Mean pT ~ 0.5 GeV

RMS:
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summary

* Projections for the ATHENA and ECCE detectors demonstrate the exciting
capabilities and kinematic coverage of the EIC for SIDIS measurements

* The electron method fails for y < 0.05, but can be improved using the hadronic
final state and DIS variables to reconstruct virtual photon axis

* We demonstrate a machine learning approach combining the hadronic final state

and scattered electron which surpasses existing methods for all of x-Q2 and p;

* Next steps in reconstruction:

e Currently working on replacing the particle flow network with an architecture which can learn correlations between
HFS particles (such as a GNN), as well as exploring other deep learning approaches

* Method will need to be tested with better implementation of radiative effects
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