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A. Quick history of jets in experiment: partons and inclusive cross sections.
B. A little quantum field theory: the role of soft and collinear radiation.
C. Why energy flow is a guide to calculable cross sections: infrared safety.

D. Briefly: infrared safety and beyond at the EIC.



A. Quick history of jets

e A “jet” is an set of particles whose total invariant mass is much smaller than its total
energy. It is intrinsically relativistic.

e The first observations of particle “jets” was in cosmic ray detection.
Particle jets in cosmic rays ...

“The average transverse momentum resulting from our measurements is pr=0.5 BeV/c
for pions ...a summary of jet events observed to date ..."” (B. Edwards et al, Phil. Mag. 3,
237 (1957))

e The late 1960s and the dawning era of high energy accelerators:

The parton picture for deep-inelastic scattering (Feynman, Bjorken)
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e the question arose: what happens to partons in the final state?
(Feynman, Bjorken & Paschos, Drell, Levy & Yan, 1969)
Do “the hadrons ‘remember’ the directions along which the bare constituents were
emitted? ... “the observation of such ‘jets’ in colliding beam processes would be most

spectacular.” (Bjorken & Brodsky, 1969) Or does confinement forbid a it?

e The inclusive DIS cross section is described by exclusive partonic scattering. Could
something similar happen in a less inclusive observable? The answer was yes . . .



e To make this long story short: Quantum Chromodynamics (QCD) reconciled the irrec-
oncilable. Here was the problem.

1. Quarks and gluons explain spectroscopy, but aren’t seen directly — confinement.

2. In highly (“deep”) inelastic, electron-proton scattering, the inclusive cross section
was found to well-approximated by lowest-order elastic scattering of point-like (spin-
1/2) particles (=“partons” = quarks here) a result called “scaling”:
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o If the “spin-% is a quark, how can a confined quark scatter freely?
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e This paradoxical combination of confined bound states at long distances and nearly free
behavior at short distances was explained by asymptotic freedom: In QCD, the force
between quarks behaves at short distances like
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where A ~ 0.2 GeV. For distances much less than 1/(0.2GeV) ~ 107 13cm the force
weakens. These are distances that began to be probed in deep inelastic scattering
experiments at SLAC in the 1970s.

e The short explanation of DIS: Over the times ct < h/GeV it takes the electron to scatter
from a quark-parton, the quark really does seem free. Later, the quark is eventually
confined, but by then it’s too late to change the probability for an event that has already
happened.

e The function F'(x) is interpreted as the probability to find quark of momentum xP in a
target of total momentum P — a parton distribution.



e To explore further, SLAC used the quantum mechanical credo: anything that can happen,
will happen.

e Quarks have electric charge, so if they are there to be produced, they will be. This
can happen when colliding electron-positron pairs annihilate to a virtual photon, which
(ungratefully) decays to just anything with charge.
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e Of course because of confinement it’s not that. But more generally, we believe that a
virtual photon decays at a point through a local operator: j.,(x) .

e This enables translating measurements into correlation functions ... In fact, the cross
section for electron-positron annihilation probes the vacuum with an electromagnetic
current.



e On the one hand, all final states are familiar hadrons, with nothing special about them
to tell the tale of QCD, |N) = |pions, protons...),
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e On the other hand, = |IV)(IN| = 1, and using translation invariance this gives

Oete—— hadrons(Q) X /d4w e—iQ-w <O|]gm(0) ng(m)|0>

e We are probing the vacuum at short distances, imposed by the Fourier transform as
Q — oo. The currents are only a distance 1/Q apart.

e Asymptotic freedom suggests a “free” result: QCD at lowest order (‘“quark-parton
model”) at cm. energy Q and angle 6
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e This works for o;,; to quite a good approximation (with calculable corrections)
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e So the “free” theory again describes the inclusive sum over confined (nonperturbative)
bound states — another “paradox”.



e Is there an imprint on these states of their origin? Yes. What to look for? The spin of
the quarks is imprinted in their angular distribution:

do (Q) = ﬂ-a%M <1 + cos? 9>
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e It's not quarks, but can look for a back to back flow of energy by finding an axis that
maximizes the projection of particle momenta (“thrust”) measuring a “jet-like” structure
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e When the particles all line up T' — 1 (neglecting masses). So what happens?



e Here’'s what was found (from a little later, at LEP):
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e Thrust is peaked near unity and follows the 1 + cos? @8 distribution — reflecting the
production of spin % particles — back-to-back. All this despite confinement. Quarks have
been replaced by “jets” of hadrons. What could be better? But what’s going on? How
can we understand persistence of short-distance structure into the final state, evolving
over many many orders of magnitude in time?



e Back to the Timeline ...1975 -1980: the first quark and gluon jets

e As we’ve seen: in electron-positron annihilation to hadrons, the angular distribution for
energy flow follows the lowest-order (“Born”) cross section for the creation of spin-1/2
pairs of quarks and antiquarks (As first seen by Hanson et al, at SLAC in 1975)

e Jets are “rare” because the high momentum transfer scattering of partons is rare (but
calculable), but in ete™ annihilation to hadrons the “rarity” is in the likelihood of anni-
hilation. Once that takes places, jets are nearly always produced.

e And then (Ellis, Gaillard, Ross (1976) Ellis, Karliner (1979)): hints of three gluons in Upsilon
decay, and then unequivocal gluon jets at Petra (1979) (S.L. Wu (1984))
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(On the right, O is oblateness, which measures the spread of energy in a plane.)
e confirmed color as a dynamical variable.
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e Jets at hadron colliders ...

e 80’s: direct and indirect ‘sightings’ of scattered parton jets at Fermilab and the ISR at
CERN, often in the context of single-particle spectra. Overall, however, an unsettled
period until the SPS large angular coverage makes possible (UA2) ‘lego plots’ in terms of
energy flow, and leads to the unequivocal observation of high-pr jet pairs that represent
scattered partons.

—
©< Volume 118B, number 1, 2, 3 PHYSICS LETTERS 2 December 1982

+...

11



e 1990’s — 2005: The great Standard Model machines: HERA, the Tevatron Run |, and
LEP | and |l provided jet cross sections over multiple orders of magnitude. The scattered
quark appears.

Run 221734 Event 6105 Class: 26 Date 12/10/1998

...just from the HOTLINE

Q**2 =21475 y=0.55 M=198
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e And now ...the era of jets at the anticipated limits of the SM, ushered in by Tevatron
Run Il, on to the LHC: 2 -7 — 8 — 13 TeV .

e Events at the scale 6z ~ % ~ 2 X 1071? meters ... observed about 10 meters away.

QATLAS|

13 EXPERIMENT

Run Number: 201006, Event Number: 55422459 i
Date: 2012-04-09 14:07:47 UTC
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e And at the EIC: unprecedented access to the fate of the scattered quark.
Radiation and hadronization, and ...

e shining from the inside, jets are probe of new phases of strongly-interacting matter in
nuclear collisions at RHIC and the LHC, (Bjorken (1983) ...)

ol G ATLAS

Run: 169045
Event: 1914004

Date: 2010-11-12
Time: 04:11:44 CET

(From 1011.6182)

e And of “cold nuclei” in electron-ion collisions, through radiation & hadronization
(A. Arccadi et al., Electron-ion Collider White Paper (1212.1701))
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B: A little quantum field theory: the role of soft and collinear radiation.

To find the quantum mechanics in all this ... how can we make jets quantitative?

e At lowest order, eTe~™ — qq is easy to calculate, but what can we do with eTe™ — qqg?
It is (IR) divergent!

e And what to do about the running of the asymptotically free QCD coupling? Doesn’t
the coupling blow up, making the entire process nonperturbative?

e The glorious example of QED: At lowest order, electron-electron scattering is finite, but
at next to leading order it is IR divergent for both virtual corrections and photon emis-
sion. But in a partially inclusive sum over soft photon emission only, the divergences
cancel, and we derive a finite cross section.

e How? We introduce an “energy resolution”, €E. ,,, below which we count all photons.
Then divergences are replaced by factors aIn(E. . /€E. . ), and this “inclusive” cross
section is well-approximated by the lowest order (again).

e For |In €| < 137, the sum over orders n is very close to the Born cross section. All the
higher order singularities cancel The paradoxical lesson: “the more inclusive, the closer
to the lowest order.”
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e Once QCD was invented, QED served an inspiration for energies and momentum trans-
fers much larger than masses.

e At very high energy we had to introduce an energy resolution and another, “angular”
resolution.

e From now on, all our particles will be massless. The picture (E. ., = Q):

54
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e With €@ the energy resolution, an § an angular resolution. Defines a “cone jet”.

16



e Looks promising, but how does it work? First, we have to isolate the problem, then show
how the jet approach solves it.

e Let’s think of what we’d like to calculate. A “transition probability”, or cross section,
summed over final states “f":

P[S] = ?S[f] [(mglmo) |*

= %}S[f] > <m0|mf)("/)(mf|m0>(")

n’,n

The “measurement function” S|f]| defines the cross section. It can be unity for some
states, zero for others, or in between. We’ll assume it’s a smooth function.

e To calculate P[S], we’ll start with the amplitude (m ;|m,)™ at fixed perturbative order
(n) in QCD or some other theory. This is “just” a bunch of Feynman diagrams, but we’ll
consider a variation of this route.
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Perturbation theory “from the beginning”

e It really just follows from Schrédinger equation for mixing of free particle states |m),
0
ih— |w(t) >= (H® + V) |p(t) >

Usually with free-state “IN” boundary condition :
[(t = —00) >=|mo >= |p;", Py
e Notation : Vj; = (m;|V|m;) (vertices)

e Theories differ in their list of particles and their (hermitian) Vs.
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For QCD, the Lagrange density

Locp = $ilin" Oy — m)y — FFVF, — gs X V" A

Fy = OMAL — 0" Al = 29 fanc Ay AL

And vertices
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quark-gluon vertex

3-gluon vertex

4-gluon vertex



e Solutions to the Schrodinger equation are sums of ordered time integrals. “Old-fashioned
perturbation theory.” (For any theory.)

(mF|m0)(") = Z /oooo d’Tn/_Tiod’Tl

T orders

d3¢; 1 n ,
H H H Zva—l—m

3 — X
loops ¢ (271') lines j 2E] vertices a=1

X exp

n—1
’I: Z ( Z E(ﬁj)) ('Tm — Tm_|_1) — ’I:E()’Tl

statesm=1 \ jinm

e Perturbative QFT in a nutshell: integrals are divergent in QFT from:
® T, — Tj (UV) and 7, — oo (lR)

e Renormalization takes care of coinciding times. We’ll just assume this is done.
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Each term in this expansion corresponds to a “time-ordered” diagram
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Here the vertices are ordered at different times. Sums of orderings give (topologically
equivalent) “Feynman diagrams”, which exhibit the Lorentz invariance manifestly.

The integrals over loop momenta are exactly the sums over all virtual states.
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e Once renormalized, infinities only come from large times in ... (same formula)

(mplmo) = X [ _dry...[” dn
T orders
nof ey ! 1 iV
X — X (A
loops ° (271')3 lines 3 2EJ vertices a=1 a-ima
. n—1 . .
X exp | © 3 ( 3 E(pj)) (Tm — Tma1) — tEgT
statesm=1 \ jinm

e Divergences from 7, — oo are “Infrared=IR”. In some sense, their “solution” is jets,

e because — it’s not as bad as it looks. Time integrals extend to infinity, but usually
oscillations damp them and answers are finite. Long-time, “infrared” divergences (logs)
come about when phases vanish and the time integrals diverge.
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e When does this happen? Here's the phase:

exp

P (z E(ﬁj)) (T = Tint1)

statesm=1 \ jinm

exp

i3 (z EF) — % E(ﬁj)) -

verticesm=1 \jinm jinm—1

e Divergences for 7; — oo requires two things:

i) (RHS) the phase must vanish <+ “degenerate states”

> E({p;)= > E(P;), and
JEmM JeEeEmMm+1

ii) (LHS) the phase must be stationary in loop momenta (sums over states):

0
[phase] = X > (£85)(Tm — Tm—1) =0

822'11 statesm jinm

where the 3;s are normal 4-velocities:

B; = +OE;/0¢;.
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e Condition of stationary phase:

S Y (8 (T — Tme1) = 0

statesm jinm

e B*AT = x* is a classical translation. For IR divergences, there must be free, classical
propagation as ¢ — oco. Easy to satisfy if all the 3;’s are equal.

e Whenever fast partons (quarks or gluons) emerge from the same point in space-time,

they will rescatter for long times only with collinear partons.

Of course, radiating or absorbing zero momentum particles also don’t affect the phase,
but adds a time integral.

Note, all the states we can reach by rescattering or zero momentum interactions describe
the same energy flow.

These are the sources of “soft” and “collinear” IR divergences.
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e Let’s illustrate the role of classical propagation.

e Example: degenerate states that cannot give long-time divergences:

M
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e This makes identifying enhancements a lot simpler!
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e RESULT: For particles emerging from a local scattering, (only) collinear or soft lines can
give long-time behavior and enhancement. These are jets, evolving in time Examples:

off s,heu—T (real)

0
<oV kil p
>'\f\ 60 (virtual)
off sheIIj

>\f\

BB TTEEEETTE
~
l
o

e This generalizes to any order, and any field theory, but gauge theories alone have soft
(k — 0) divergences.

e We can calculate if we regulate IR divergences, but these aren’t physical. Let’s find out
what we can compute that is physical.
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C. Why energy flow is a guide to calculable cross sections: infrared safety

e Rewrite our general amplitude:

d3¢; 1
(mp|my)™ = > 11

orders mj...my loopst - (271')3 lines 3 ZEJ

n

Ta+1 -
X H /oo zva—l—)a exp

vertices a=1

i ( b E(ﬁ})) (Ta1 — Ta) — iBomy

jina—1

d3¢; 1
> 11

orders mj...my loops? (271')3 lines 3 ZEJ

n Ta+1 . . — —
x Nl [MiVe.exp ( > BG) — % E(pj>) -
vertices a=1 jina jina—1

With 7,1 = oco.

e IR divergences are controlled by the 7, integral (“n=F"): the “largest time”.

oo .
/ an—1—>n exp

Tn—1

(z EG) — % E(@-)) N
JinF

Jinn—1
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Say the final interaction is the splitting of one particle into two, all treated as massless:

©y
<
S
o]

|
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state n—1 state n

Here state n = the final state F
All the other energies cancel, and the largest time integral is

/oo dTnz‘Vn_lﬁFei(ZjinnE(ﬁj) — Yjinn-1E@}))n

Tn—1

0 . 3
= [ driV, et

Tn—1

Relabel: p — ki, &k — ko:
A, = E(ki — ko) + E(ky) — E(k1)
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Can use the i€ prescription A — A + 2e to make the 7, integral converge. Or, we can
observe that most of this integral cancels out “oscillation by oscillation”: (For simplicity,
take 7,_1 — 0)

1

[ drpettnm = A 7 da [cos x + i sin z]
= 7/0 .’B— [sinx — i cos x]
= — —[sin0 — 7 cos 0]
= Azn Oﬂ/2 dx sinx

— Only times smaller than 7 /2A,, really contribute in the amplitude.

— 1/A,, is called the “formation time” of state n.

What is A,, and when does it vanish? When it does, we’re going to get an IR divergence.
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A, = E(k, — ko) + E(ky) — E(k1)

— Kinematics
ki = (P,0r), k2 = (2P,kr), kr < zP K P
— Then
k3, 1 2z P
An = S — =
2zP A, k2,

— Formation time and the 7, integral diverge for kr — 0 at fixed z (collinear radiation)
and when z — 0 (with k7 < zP) (soft radiation).

— In terms of the angle: kr = zP sin 0, for small 6,

1 1 1

— ~ ~N —

A, 0’z P Ok

— The time integral diverges whenever we find a A,, = 0.

— Now we can motivate the construction of IR finite cross sections.
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Aside ...

— The point A,, = 0 is exactly a point of stationary phase in k7.

/deT /oo dTneiAnTn — /dsz /OO dTneiTnk%/ZzzP

~ 2mzP /oo %
Tn
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Finite-time cross sections and what they represent. Consider the probability for a sum
over states f, each weighted by S|f],

P[S] = zj;s[f] ; <m0|mf>(”/)(mf|m0)(")

— Each matrix element and complex conjugate is a sum of ordered time integrals
— In any term of P[S], as we integrate over times, there is a largest time.

— The largest time may be in the amplitude, or in the complex conjugate. We combine
these two possibilities. Inside the sum over states, we find

/ . .
X [ eI (V] eT A To = i (mg|my)

T'—2
X /Too_l d1,Vi_1-n {ieiA”T”S[n] — ie_i(_A”)T”S[n — 1]}

- )
n ezA

A n—lTn—l,I:Vf_z_)f_leZAn—lTn—l X .
n—2

in (mg|lmg) = X

— When S[n| = S[n — 1] this vanishes! This is called the “largest time equation”. It
is an expression of unitarity — the sum of all probabilities has to be one.

— All that matters is the difference due to the last interaction: n — 1 — n. When this
produces a difference in S[f], the result is nonzero.
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e General formulation. We define a set of smooth (symmetric) functions that depend only
on the flow of energy, and not particle content:

Snt1(p1... (1 — 2)pN, 2pN) = Sni1(P1...DN)
Whenever A,, — 0, we only need
Snii[n] — Snn —1] ~ ck?
for some constant c with b > 0. Then

/dTn eiAnTn (SN—I—l[n] — SN[TL — 1]) - c /dTn kﬁo_eiAnrn

e There is now suppression for large times:

dr,
1+b/2
T1+b/

¢ [dkp k! [T drpetn = meT(1+b) [~

e The largest time integral now converges, and so must the smaller ones, Our calculations
now give predictions, rather than infinities. This is infrared safety.

e Every calculable jet cross section is based on such a weight function.
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e In summary, For any S[f] that respects energy flow, we compute the cross section

P[S] = ?S[f] [(mpmo)|®
e The same applies to jet cross sections themselves if they are desighed to respect the

flow of energy. Here, S[f] is chosen to be unity for states that obey certain conditions
in jet finding algorithms — which depend only on energy flows,

o[Sn—jet] = ?9(5n—jet[f]) [ (g lmo) |

e Once we have identified a set of jets, we can then explore their properties by using weight
functions w,,_je:[f] that reveal their structure,

¢ Wa—jet [f] O(Su—jet[f]) [(mrs|mmo)|*
21 0(Snjes[f]) [{mg|mo)[?

(Wn—jet) =

e These are what we can compute.
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e An example is the cross section for a cone jet with a given energies,
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e The smaller (larger) the “resolutions” € and §, the more (less) sensitivity to long times.
We follow the story only to times like 1/Q4.

Other fundamental choices: radiation pattern and and energy-energy correlation

Syad[7] > E; 8% (A — n(ks))

Seec(f1,P2) = X EiE; 6% (hy — n(ks)) 6% (A — (k)
1,
Perhaps surprisingly, we can treat the delta functions as if they were smooth, and if we
integrate over 1, ..., with these we can generate any weight function.
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D. Briefly: Infrared safety and beyond at the EIC.

e Jet cross sections at the EIC are factorized products of parton distributions and IR safe
sums over final states:

TP @kier) = X [ dEfap(€, 1) Weransiorsx (€Ps @5 Kjet)

partonsa

e /dx cand PDF f,,, an be generalized to TMDs for appropriate observables.

e These and more exclusive cross sections involving jets can probe the “initial state” struc-

ture of nucleons and nuclei, precisely because the jets reflect energy flow established at
short distances.

e Jet substructure encodes both perturbative and nonperturbative dynamics of how the
energy of a scattered quark emerges as hadrons.

e Planned particle identification and momentum capabilities may make possible tests of
theories of hadronization in vacuum and in nuclei.
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e With a firm basis of IR safety in sufficiently inclusive cross sections, the way will be open
to study how perturbative probability distributions are “redistributed” at long times by
nonperturbative processes.

e Very likely advanced data analysis, and in time quantum simulations will play a role in
the decoding of particle jets.
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