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A. Quick history of jets in experiment: partons and inclusive cross sections.

B. A little quantum field theory: the role of soft and collinear radiation.

C. Why energy flow is a guide to calculable cross sections: infrared safety.

D. Briefly: infrared safety and beyond at the EIC.
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A. Quick history of jets

• A “jet” is an set of particles whose total invariant mass is much smaller than its total
energy. It is intrinsically relativistic.

• The first observations of particle “jets” was in cosmic ray detection.

Particle jets in cosmic rays . . .

“The average transverse momentum resulting from our measurements is pT=0.5 BeV/c
for pions . . . a summary of jet events observed to date . . . ” (B. Edwards et al, Phil. Mag. 3,

237 (1957))

• The late 1960s and the dawning era of high energy accelerators:

The parton picture for deep-inelastic scattering (Feynman, Bjorken)

σincl
e proton

Q, x =
Q2

2p · q

→ σexcl
e parton(Q)× Fproton(x) ,

• the question arose: what happens to partons in the final state?
(Feynman, Bjorken & Paschos, Drell, Levy & Yan, 1969)

Do “the hadrons ‘remember’ the directions along which the bare constituents were
emitted? . . . “the observation of such ‘jets’ in colliding beam processes would be most
spectacular.” (Bjorken & Brodsky, 1969) Or does confinement forbid a it?

• The inclusive DIS cross section is described by exclusive partonic scattering. Could
something similar happen in a less inclusive observable? The answer was yes . . .

2



• To make this long story short: Quantum Chromodynamics (QCD) reconciled the irrec-
oncilable. Here was the problem.

1. Quarks and gluons explain spectroscopy, but aren’t seen directly – confinement.

2. In highly (“deep”) inelastic, electron-proton scattering, the inclusive cross section
was found to well-approximated by lowest-order elastic scattering of point-like (spin-
1/2) particles (=“partons” = quarks here) a result called “scaling”:

dσe+p(Q, p · q)
dQ2

|inclusive ∝ F

x =
Q2

2p · q

 dσ
free
e+spin 1

2

dQ2
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• If the “spin-1
2

is a quark, how can a confined quark scatter freely?
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• This paradoxical combination of confined bound states at long distances and nearly free
behavior at short distances was explained by asymptotic freedom: In QCD, the force
between quarks behaves at short distances like

f(r) ∼ αs(r)

r2
, αs(r

2) =
4π

ln
(

1
r2Λ2

)

where Λ ∼ 0.2 GeV. For distances much less than 1/(0.2GeV ) ∼ 10−13cm the force
weakens. These are distances that began to be probed in deep inelastic scattering
experiments at SLAC in the 1970s.

• The short explanation of DIS: Over the times ct ≤ h̄/GeV it takes the electron to scatter
from a quark-parton, the quark really does seem free. Later, the quark is eventually
confined, but by then it’s too late to change the probability for an event that has already
happened.

• The function F (x) is interpreted as the probability to find quark of momentum xP in a
target of total momentum P – a parton distribution.
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• To explore further, SLAC used the quantum mechanical credo: anything that can happen,
will happen.

• Quarks have electric charge, so if they are there to be produced, they will be. This
can happen when colliding electron-positron pairs annihilate to a virtual photon, which
(ungratefully) decays to just anything with charge.

3.0 STUDY OF QCD IN HADRON PRODUCTION 

3.1 Testing the QCD Differential Cross Section 

3.2 The Strong Interaction Coupling Constant 

3.3 Quark and Gluon Fragmentation 

3.4 Characteristics of the Final State Hadrons 

4.0 ELECTROWEAK INTERACTIONS 

4.1 Bhabha Scattering 

4.2 Muon and Tau Pair Production 

4.3 Charge Asymmetry 

4.4 Interpretation of Leptonic Data 

4.5 Electroweak Reactions of Quarks 

4.6 B Meson Lifetime Limit 

4.7 Production of Leptons in Hadronic Events 

4.8 Search for Structure in the Fermions 

4.9 Search for Symmetry Breaking Scalars. 

1.0 SIMPLE ELECTRON POSITRON INTERACTION 

At high energies, the dominant processes electron positron 

collisions are particularly simple. Most of the interactions which 

we measure are fermion pair production, calculable using the 

Feynman diagram below. 

f 
The electron and positron annihilate forming a virtual photon which 

has a mass equal to the center of mass energy. This photon may 

then decay into any pair of charged fermions that is energetically 

allowed. The processes of this sort which have been observed at 

PETRA are 

370 

j
EM

• Of course because of confinement it’s not that. But more generally, we believe that a
virtual photon decays at a point through a local operator: jem(x) .

• This enables translating measurements into correlation functions . . . In fact, the cross
section for electron-positron annihilation probes the vacuum with an electromagnetic
current.
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• On the one hand, all final states are familiar hadrons, with nothing special about them
to tell the tale of QCD, |N〉 = |pions, protons . . .〉,

σe+e−→ hadrons(Q) ∝ ∑
N
|〈0|jµem(0)|N〉|2 δ4(Q− pN)

• On the other hand,
∑
N |N〉〈N | = 1, and using translation invariance this gives

σe+e−→ hadrons(Q) ∝
∫
d4x e−iQ·x 〈0|jµem(0) jµem(x)|0〉

• We are probing the vacuum at short distances, imposed by the Fourier transform as
Q→∞. The currents are only a distance 1/Q apart.

• Asymptotic freedom suggests a “free” result: QCD at lowest order (“quark-parton
model”) at cm. energy Q and angle θ

σtote+e−→hadrons =
∑

quarks a
e2
aNc

4πα2
EM

3Q2

6



• This works for σtot to quite a good approximation (with calculable corrections)

51. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 51.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Green line is 
parton model

• So the “free” theory again describes the inclusive sum over confined (nonperturbative)
bound states – another “paradox”.
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• Is there an imprint on these states of their origin? Yes. What to look for? The spin of
the quarks is imprinted in their angular distribution:

dσ(Q)

d cos θ
=

πα2
EM

2Q2

(
1 + cos2 θ

)

• It’s not quarks, but can look for a back to back flow of energy by finding an axis that
maximizes the projection of particle momenta (“thrust”) measuring a “jet-like” structure

dσe+e−→ hadrons(Q)

dT
∝ ∑

N
|〈0|jµem(0)|N〉|2 δ4(Q− pN) δ

T − 1

Q
maxn̂

∑
i∈N
|~pi · n̂|


b

¡Q

• When the particles all line up T → 1 (neglecting masses). So what happens?
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• Here’s what was found (from a little later, at LEP):
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Figure 1: (a) Fit of equation (6) to the corrected data corresponding to the thrust bin
0.70 < T < 0.75; it has χ2/d.o.f.=79/90. The fitted region is −0.92 < cos θTh < 0.92. The
contributions from the longitudinal and transverse cross-sections are shown separately. (b)
The residuals from the fit.
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• For e+e−:

Y

X
Z

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105

Run:event 4093: 1000 Date 930527 Time 20716

Ebeam45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80)

Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

Ct rk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SumE= 22.6)

Muon(N= 0) Sec Vtx(N= 3) Fdet (N= 0 SumE= 0.0)

• Thrust is peaked near unity and follows the 1 + cos2 θ distribution – reflecting the
production of spin 1

2
particles – back-to-back. All this despite confinement. Quarks have

been replaced by “jets” of hadrons. What could be better? But what’s going on? How
can we understand persistence of short-distance structure into the final state, evolving
over many many orders of magnitude in time?
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• Back to the Timeline . . . 1975 -1980: the first quark and gluon jets

• As we’ve seen: in electron-positron annihilation to hadrons, the angular distribution for
energy flow follows the lowest-order (“Born”) cross section for the creation of spin-1/2
pairs of quarks and antiquarks (As first seen by Hanson et al, at SLAC in 1975)

• Jets are “rare” because the high momentum transfer scattering of partons is rare (but
calculable), but in e+e− annihilation to hadrons the “rarity” is in the likelihood of anni-
hilation. Once that takes places, jets are nearly always produced.

• And then (Ellis, Gaillard, Ross (1976) Ellis, Karliner (1979)): hints of three gluons in Upsilon
decay, and then unequivocal gluon jets at Petra (1979) (S.L. Wu (1984))

8.2. JETS AND OTHER OBSERVABLES 173

Figure 8.17: Discovery of quark jets at SPEAR (SLAC). Observed sphericity (see p. 170)
distributions for data, jet model (solid curves) and phase-space model (dashed curves) for
ECM = 3GeV (LHS) and 7.4GeV (RHS). Source: [42, 38, p. 1611].

(a) (b)

Figure 8.18: The first three-jet event seen by TASSO (a) and the distribution N�1dN/dO
as a function of oblateness, measured at MARK-J (b). In both figures of (b) the solid
curves are the predictions based on the qq̄g model and the dashed curve is based on the
standard qq̄ model. Source: [44, p. 832].

(On the right, O is oblateness, which measures the spread of energy in a plane.)

• confirmed color as a dynamical variable.
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• Jets at hadron colliders . . .

• 80’s: direct and indirect ‘sightings’ of scattered parton jets at Fermilab and the ISR at
CERN, often in the context of single-particle spectra. Overall, however, an unsettled
period until the SPS large angular coverage makes possible (UA2) ‘lego plots’ in terms of
energy flow, and leads to the unequivocal observation of high-pT jet pairs that represent
scattered partons.

13 May 2004 Joseph Kroll         University of Pennsylvania 41 

UA2: 1st Evidence of Jets 79 µb-1 of data 

Largest ΣET event 

ΣET concentrated in 
back to back regions 
not isotropic 

Unroll calorimeter: “Lego Plot” 

φ.
θ (η) 

A “small” experiment: 54 Authors 

UA2 Collaboration, M. Banner et al., 
Phys. Lett. 118B (1982) p. 203 
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• 1990’s – 2005: The great Standard Model machines: HERA, the Tevatron Run I, and
LEP I and II provided jet cross sections over multiple orders of magnitude. The scattered
quark appears.

• And for DIS:

 Q**2 = 21475   y = 0.55   M = 198 
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• And now . . . the era of jets at the anticipated limits of the SM, ushered in by Tevatron
Run II, on to the LHC: 2 → 7 → 8 → 13 TeV .

• Events at the scale δx ∼ h̄
1 TeV

∼ 2× 10−19 meters . . . observed about 10 meters away.
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• And at the EIC: unprecedented access to the fate of the scattered quark.
Radiation and hadronization, and . . .

• shining from the inside, jets are probe of new phases of strongly-interacting matter in
nuclear collisions at RHIC and the LHC, (Bjorken (1983) . . . ) 2

FIG. 1: Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, and
with high energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with pT > 2.6 GeV
and applying cell thresholds in the calorimeters (ET > 700 MeV in the electromagnetic calorimeter, and E > 1 GeV in the
hadronic calorimeter) the recoil can be seen dispersed widely over azimuth.

|⌘| < 3.2. The hadronic calorimetry in the range |⌘| < 1.7
is provided by a sampling calorimeter made of steel and
scintillating tiles. In the end-caps (1.5 < |⌘| < 3.2),
LAr technology is also used for the hadronic calorime-
ters, matching the outer |⌘| limits of the electromag-
netic calorimeters. To complete the ⌘ coverage, the LAr
forward calorimeters provide both electromagnetic and
hadronic energy measurements, extending the coverage
up to |⌘| = 4.9. The calorimeter (⌘,�) granularities are
0.1 ⇥ 0.1 for the hadronic calorimeters up to |⌘| = 2.5
(except for the third layer of the Tile calorimeter, which
has a segmentation of 0.2⇥0.1 up to |⌘| = 1.7), and then
0.2⇥ 0.2 up to |⌘| = 4.9. The EM calorimeters are longi-
tudinally segmented into three compartments and feature
a much finer readout granularity varying by layer, with
cells as small as 0.025⇥0.025 extending to |⌘| = 2.5 in the
middle layer. In the data taking period considered, ap-
proximately 187,000 calorimeter cells (98% of the total)
were usable for event reconstruction.

The bulk of the data reported here were triggered
using coincidence signals from two sets of Minimum
Bias Trigger Scintillator (MBTS) detectors, positioned
at z = ±3.56 m, covering the full azimuth between
2.09 < |⌘| < 3.84 and divided into eight � sectors and two
⌘ sectors. Coincidences in the Zero Degree Calorimeter
and LUCID luminosity detectors were also used as pri-
mary triggers, since these detectors were far less suscep-
tible to LHC beam backgrounds. These triggers have a
large overlap and are close to fully e�cient for the events
studied here.

In the o✏ine analysis, events are required to have a
time di↵erence between the two sets of MBTS counters
of �t < 3 ns and a reconstructed vertex to e�ciently
reject beam-halo backgrounds. The primary vertex is
derived from the reconstructed tracks in the Inner De-
tector (ID), which covers |⌘| < 2.5 using silicon pixel and

strip detectors surrounded by straw tubes. These event
selection criteria have been estimated to accept over 98%
of the total lead-lead inelastic cross section.

The level of event activity or “centrality” is char-
acterized using the total transverse energy (⌃ET ) de-
posited in the Forward Calorimeters (FCal), which cover
3.2 < |⌘| < 4.9, shown in Fig. 2. Bins are defined in cen-
trality according to fractions of the total lead-lead cross
section selected by the trigger and are expressed in terms
of percentiles (0-10%, 10-20%, 20-40% and 40-100%) with
0% representing the upper end of the ⌃ET distribution.
Previous heavy ion experiments have shown a clear cor-
relation of the ⌃ET with the geometry of the overlap
region of the colliding nuclei and, correspondingly, the
total event multiplicity. This is verified in the bottom
panel of Fig. 2 which shows a tight correlation between
the energy flow near mid-rapidity and the forward ⌃ET .
The forward ⌃ET is used for this analysis to avoid biasing
the centrality measurement with jets.

Jets have been reconstructed using the infrared-safe
anti-kt jet clustering algorithm [9] with the radius pa-
rameter R = 0.4. The inputs to this algorithm are “tow-
ers” of calorimeter cells of size �⌘⇥�� = 0.1⇥ 0.1 with
the input cells weighted using energy-density dependent
factors to correct for calorimeter non-compensation and
other energy losses. Jet four-momenta are constructed
by the vectorial addition of cells, treating each cell as an
(E, ~p) four-vector with zero mass.

The jets reconstructed using the anti-kt algorithm con-
tain a mix of genuine jets and jet-sized patches of the un-
derlying event. For each event, we estimate the average
transverse energy density in each calorimeter layer in bins
of width �⌘ = 0.1, and averaged over azimuth. In the
averaging, we exclude jets with D = ET (max)/hET i, the
ratio of the maximum tower energy over the mean tower
energy, greater than 5. The value Dcut = 5 is chosen

(From 1011.6182)

• And of “cold nuclei” in electron-ion collisions, through radiation & hadronization
(A. Arccadi et al., Electron-ion Collider White Paper (1212.1701))
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Figure 1.7: Left: A schematic illustrating the interaction of a parton moving through cold
nuclear matter: the hadron is formed outside (top) or inside (bottom) the nucleus. Right: The
ratio of the semi-inclusive cross-section for producing a pion (red) composed of light quarks,
and a D0 meson (blue) composed of heavy quarks in e+lead collisions to e+deuteron collisions,
plotted as a function of z, the ratio of the momentum carried by the produced hadron to that
of the virtual photon (�⇤), as shown in the plots on the left.

much lower value of x, approaching the re-
gion of gluon saturation. In addition, the

EIC could for the first time reliably quantify
the nuclear gluon distribution over a wide
range of momentum fraction x.

1.2.3 Physics Possibilities at the Intensity Frontier

The subfield of Fundamental Symmetries in nuclear physics has an established history of
key discoveries, enabled by either the introduction of new technologies or the increase in
energy and luminosity of accelerator facilities. While the EIC is primarily being proposed for
exploring new frontiers in QCD, it o↵ers a unique new combination of experimental probes
potentially interesting to the investigations in Fundamental Symmetries. For example,
the availability of polarized beams at high energy and high luminosity, combined with a
state-of-the-art hermetic detector, could extend Standard Model tests of the running of
the weak-coupling constant far beyond the reach of the JLab12 parity violation program,
namely toward the Z-pole scale previously probed at LEP and SLC.
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B: A little quantum field theory: the role of soft and collinear radiation.

To find the quantum mechanics in all this . . . how can we make jets quantitative?

• At lowest order, e+e− → qq̄ is easy to calculate, but what can we do with e+e− → qq̄g?
It is (IR) divergent!

• And what to do about the running of the asymptotically free QCD coupling? Doesn’t
the coupling blow up, making the entire process nonperturbative?

• The glorious example of QED: At lowest order, electron-electron scattering is finite, but
at next to leading order it is IR divergent for both virtual corrections and photon emis-
sion. But in a partially inclusive sum over soft photon emission only, the divergences
cancel, and we derive a finite cross section.

• How? We introduce an “energy resolution”, εEc.m, below which we count all photons.
Then divergences are replaced by factors α ln(Ec.n./εEc.m.), and this “inclusive” cross
section is well-approximated by the lowest order (again).

• For | ln ε| � 137, the sum over orders n is very close to the Born cross section. All the
higher order singularities cancel The paradoxical lesson: “the more inclusive, the closer
to the lowest order.”
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• Once QCD was invented, QED served an inspiration for energies and momentum trans-
fers much larger than masses.

• At very high energy we had to introduce an energy resolution and another, “angular”
resolution.

• From now on, all our particles will be massless. The picture (Ec.m. = Q):

b

¡Q

• With εQ the energy resolution, an δ an angular resolution. Defines a “cone jet”.
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• Looks promising, but how does it work? First, we have to isolate the problem, then show
how the jet approach solves it.

• Let’s think of what we’d like to calculate. A “transition probability”, or cross section,
summed over final states “f”:

P [S] =
∑
f
S[f ] |〈mf |m0〉|2

=
∑
f
S[f ]

∑
n′,n
〈m0|mf〉(n′)〈mf |m0〉(n)

The “measurement function” S[f ] defines the cross section. It can be unity for some
states, zero for others, or in between. We’ll assume it’s a smooth function.

• To calculate P [S], we’ll start with the amplitude 〈mf |m0〉(n) at fixed perturbative order
(n) in QCD or some other theory. This is “just” a bunch of Feynman diagrams, but we’ll
consider a variation of this route.
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Perturbation theory “from the beginning”

• It really just follows from Schrödinger equation for mixing of free particle states |m〉,

ih̄
∂

∂t
|ψ(t) >=

(
H(0) + V

)
|ψ(t) >

Usually with free-state “IN” boundary condition :

|ψ(t = −∞) >= |m0 >= |pIN
1 , p

IN
2 〉

• Notation : Vji = 〈mj|V |mi〉 (vertices)

• Theories differ in their list of particles and their (hermitian) V s.
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For QCD, the Lagrange density

From the Lagrangian to Feynman graphs

• Here is QCD Lagrangian with all colour indices shown.29

LQCD =  i(i�
µ@µ �m) i � 1

4F
µ⌫
a F a

µ⌫ � gs  i�
a
ij j �

µAa
µ

Fµ⌫
a = @µA⌫

a � @⌫Aµ
a � 2gs fabcA

µ
b A

⌫
c

We have introduced here a second colour index a = (1, . . . , 8) to

label the gluon fields and the corresponding SU(3) generators.

• If we multiply-out the field tensor contraction Fµ⌫
a F a

µ⌫, we see all

the elements of a QCD Feynman diagram in the Lagrangian:

 ̄i(i�
µ@µ �m) i quark propagator

(@µA⌫
a � @⌫Aµ

a)(@µAa
⌫ � @⌫Aa

µ) gluon propagator

gs  ̄i�
a
ij j�

µAa
µ quark-gluon vertex

gs (@µA⌫
a � @⌫Aµ

a)fabcA
b
µAc

⌫ 3-gluon vertex

g2
s fabcA

µ
b A⌫

c fadeA
d
µAe

⌫ 4-gluon vertex

29Summation over repeated indices is implied, irrespective of their position (upper or lower); the colour indices
are just placed wherever the Lorentz indices leaves room for them.

6–4

And vertices

From the Lagrangian to Feynman graphs

• Here is QCD Lagrangian with all colour indices shown.29

LQCD =  i(i�
µ@µ �m) i � 1

4F
µ⌫
a F a

µ⌫ � gs  i�
a
ij j �

µAa
µ

Fµ⌫
a = @µA⌫

a � @⌫Aµ
a � 2gs fabcA

µ
b A

⌫
c

We have introduced here a second colour index a = (1, . . . , 8) to

label the gluon fields and the corresponding SU(3) generators.

• If we multiply-out the field tensor contraction Fµ⌫
a F a

µ⌫, we see all

the elements of a QCD Feynman diagram in the Lagrangian:

 ̄i(i�
µ@µ �m) i quark propagator

(@µA⌫
a � @⌫Aµ

a)(@µAa
⌫ � @⌫Aa

µ) gluon propagator

gs  ̄i�
a
ij j�

µAa
µ quark-gluon vertex

gs (@µA⌫
a � @⌫Aµ

a)fabcA
b
µAc

⌫ 3-gluon vertex

g2
s fabcA

µ
b A⌫

c fadeA
d
µAe

⌫ 4-gluon vertex

29Summation over repeated indices is implied, irrespective of their position (upper or lower); the colour indices
are just placed wherever the Lorentz indices leaves room for them.

6–4
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• Solutions to the Schrödinger equation are sums of ordered time integrals. “Old-fashioned
perturbation theory.” (For any theory.)

〈mF |m0〉(n) =
∑

τ orders

∫ ∞
−∞ dτn . . .

∫ τ2
−∞ dτ1

× ∏
loops i

∫ d3`i

(2π)3

∏
lines j

1

2Ej
×

n∏
vertices a=1

iVa−1→a

× exp

 i n−1∑
statesm=1

 ∑
j inm

E(~pj)

 (τm − τm+1)− iE0τ1



• Perturbative QFT in a nutshell: integrals are divergent in QFT from:

• τi → τj (UV) and τi →∞ (IR).

• Renormalization takes care of coinciding times. We’ll just assume this is done.
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Each term in this expansion corresponds to a “time-ordered” diagram

Here the vertices are ordered at different times. Sums of orderings give (topologically
equivalent) “Feynman diagrams”, which exhibit the Lorentz invariance manifestly.

The integrals over loop momenta are exactly the sums over all virtual states.
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• Once renormalized, infinities only come from large times in . . . (same formula)

〈mn|m0〉 =
∑

τ orders

∫ ∞
−∞ dτn . . .

∫ τ2
−∞ dτ1

× ∏
loops i

∫ d3`i

(2π)3

∏
lines j

1

2Ej
×

n∏
vertices a=1

iVa−1→a

× exp

 i n−1∑
statesm=1

 ∑
j inm

E(~pj)

 (τm − τm+1)− iE0τ1



• Divergences from τi →∞ are “Infrared=IR”. In some sense, their “solution” is jets,

• because – it’s not as bad as it looks. Time integrals extend to infinity, but usually
oscillations damp them and answers are finite. Long-time, “infrared” divergences (logs)
come about when phases vanish and the time integrals diverge.
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• When does this happen? Here’s the phase:

exp

 i n−1∑
statesm=1

 ∑
j inm

E(~pj)

 (τm − τm+1)

 =

exp

 i n∑
verticesm=1

 ∑
j inm

E(~pj) − ∑
j inm−1

E(~pj)

 τm



• Divergences for τi →∞ requires two things:

i) (RHS) the phase must vanish ↔ “degenerate states”

∑
j ∈m

E(~pj) =
∑

j ∈m+1
E(~pj) , and

ii) (LHS) the phase must be stationary in loop momenta (sums over states):

∂

∂`iµ
[ phase ] =

∑
statesm

∑
j inm

(±βµj )(τm − τm−1) = 0

where the βjs are normal 4-velocities:

βj = ±∂Ej/∂`i .
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• Condition of stationary phase:

∑
statesm

∑
j inm

(±βµj )(τm − τm−1) = 0

• βµ∆τ = xµ is a classical translation. For IR divergences, there must be free, classical
propagation as t→∞. Easy to satisfy if all the βj’s are equal.

• Whenever fast partons (quarks or gluons) emerge from the same point in space-time,

they will rescatter for long times only with collinear partons.

Of course, radiating or absorbing zero momentum particles also don’t affect the phase,
but adds a time integral.

Note, all the states we can reach by rescattering or zero momentum interactions describe
the same energy flow.

These are the sources of “soft” and “collinear” IR divergences.
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• Let’s illustrate the role of classical propagation.

• Example: degenerate states that cannot give long-time divergences:

!"#

$%%&'()**

#

#

• This makes identifying enhancements a lot simpler!
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• RESULT: For particles emerging from a local scattering, (only) collinear or soft lines can
give long-time behavior and enhancement. These are jets, evolving in time Examples:

!"!##!$!
%&'()*

"
$

!!"!##!$!
%+,&-.()*

"/0

122!34'))

122!34'))

• This generalizes to any order, and any field theory, but gauge theories alone have soft
(k→ 0) divergences.

• We can calculate if we regulate IR divergences, but these aren’t physical. Let’s find out
what we can compute that is physical.
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C. Why energy flow is a guide to calculable cross sections: infrared safety

• Rewrite our general amplitude:

〈mF |m0〉(n) =
∑

orders m1...mn

∏
loops i

∫ d3`i

(2π)3

∏
lines j

1

2Ej

×
n∏

vertices a=1

∫ τa+1

−∞ iVa−1→a exp

 i
 ∑
j in a−1

E(~pj)

 (τa−1 − τa)− iE0τ1



=
∑

orders m1...mn

∏
loops i

∫ d3`i

(2π)3

∏
lines j

1

2Ej

×
n∏

vertices a=1

∫ τa+1

−∞ iVa−1→a exp

i
 ∑
j in a

E(~pj) − ∑
j in a−1

E(~pj)

 τa



With τn+1 =∞.

• IR divergences are controlled by the τn integral (“n=F”): the “largest time”.

∫ ∞
τn−1

iVn−1→n exp

i
 ∑
j inF

E(~pj) − ∑
j inn−1

E(~pj)

 τn


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Say the final interaction is the splitting of one particle into two, all treated as massless:

p

k

p − kV n

state n−1 state n

t n

Here state n = the final state F
All the other energies cancel, and the largest time integral is

∫ ∞
τn−1

dτniVn−1→Fe
i(
∑
j innE(~pj) −

∑
j inn−1E(~pj))τn

=
∫ ∞
τn−1

dτniVn−1→Fei∆nτn

Relabel: p→ k1, k→ k2:

∆n = E(~k1 − ~k2) + E(~k2)− E(~k1)
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Can use the iε prescription ∆→ ∆ + iε to make the τn integral converge. Or, we can
observe that most of this integral cancels out “oscillation by oscillation”: (For simplicity,
take τn−1 → 0)

∫ ∞
0
dτne

i∆nτn =
1

∆n

∫ ∞
0
dx [cosx+ i sinx]

=
1

∆n

∫ ∞
0
dx

d

dx
[sinx− i cosx]

= − 1

∆n

[sin 0− i cos 0]

=
i

∆n

∫ π/2
0

dx sinx

– Only times smaller than π/2∆n really contribute in the amplitude.

– 1/∆n is called the “formation time” of state n.

What is ∆n and when does it vanish? When it does, we’re going to get an IR divergence.
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∆n = E(~k1 − ~k2) + E(~k2)− E(~k1)

– Kinematics

~k1 = (P,~0T ) , ~k2 = (zP,~kT ) , kT ≤ zP � P

– Then

∆n =
k2
T

2zP
⇔ 1

∆n

=
2zP

k2
T

– Formation time and the τn integral diverge for kT → 0 at fixed z (collinear radiation)
and when z → 0 (with kT ≤ zP ) (soft radiation).

– In terms of the angle: kT = zP sin θ, for small θ,

1

∆n

∼ 1

θ2zP
∼ 1

θkT

– The time integral diverges whenever we find a ∆n = 0.

– Now we can motivate the construction of IR finite cross sections.
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Aside . . .

– The point ∆n = 0 is exactly a point of stationary phase in kT .

∫
d2kT

∫ ∞
dτne

i∆nτn =
∫
d2kT

∫ ∞
dτne

iτnk
2
T /2zzP

∼ 2πzP
∫ ∞ dτn

τn
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Finite-time cross sections and what they represent. Consider the probability for a sum
over states f , each weighted by S[f ],

P [S] =
∑
f
S[f ]

∑
n′,n
〈m0|mf〉(n′)〈mf |m0〉(n)

– Each matrix element and complex conjugate is a sum of ordered time integrals

– In any term of P [S], as we integrate over times, there is a largest time.

– The largest time may be in the amplitude, or in the complex conjugate. We combine
these two possibilities. Inside the sum over states, we find

. . .×
∫ τ ′n
τ ′n−2

ei∆n−1τn−1(−iV ′f−2→f−1)e
−i∆n−1τ ′n−1 ⇐ in 〈m0|mf〉

×
∫ ∞
τn−1

dτnVn−1→n
{
iei∆nτnS[n]− ie−i(−∆n)τnS[n− 1]

}

in 〈mf |m0〉 ⇒ ×
∫ τn
τn−2

ei∆n−1τn−1iVf−2→f−1e
i∆n−1τn−1 × . . .

– When S[n] = S[n − 1] this vanishes! This is called the “largest time equation”. It
is an expression of unitarity – the sum of all probabilities has to be one.

– All that matters is the difference due to the last interaction: n− 1→ n. When this
produces a difference in S[f ], the result is nonzero.
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• General formulation. We define a set of smooth (symmetric) functions that depend only
on the flow of energy, and not particle content:

SN+1(p1 . . . (1− z)pN , zpN) = SN+1(p1 . . . pN)

Whenever ∆n → 0, we only need

SN+1[n]− SN [n− 1] ∼ c kb⊥
for some constant c with b > 0. Then∫

dτn e
i∆nτn (SN+1[n]− SN [n− 1]) → c

∫
dτn k

b
⊥e

i∆nτn

• There is now suppression for large times:

c
∫
d2kT k

b
⊥
∫ ∞

dτne
i∆nτn = πcΓ(1 + b)

∫ ∞ dτn

τ 1+b/2
n

• The largest time integral now converges, and so must the smaller ones, Our calculations
now give predictions, rather than infinities. This is infrared safety.

• Every calculable jet cross section is based on such a weight function.
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• In summary, For any S[f ] that respects energy flow, we compute the cross section

P [S] =
∑
f
S[f ] |〈mf |m0〉|2

• The same applies to jet cross sections themselves if they are designed to respect the
flow of energy. Here, S[f] is chosen to be unity for states that obey certain conditions
in jet finding algorithms – which depend only on energy flows,

σ[Sn−jet] =
∑
f
θ(Sn−jet[f ]) |〈mf |m0〉|2

• Once we have identified a set of jets, we can then explore their properties by using weight
functions wn−jet[f ] that reveal their structure,

〈wn−jet〉 =

∑
f wn−jet[f ] θ(Sn−jet[f ]) |〈mf |m0〉|2∑

f θ(Sn−jet[f ]) |〈mf |m0〉|2

• These are what we can compute.
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• An example is the cross section for a cone jet with a given energies,

b

¡Q

• The smaller (larger) the “resolutions” ε and δ, the more (less) sensitivity to long times.
We follow the story only to times like 1/Qδ.

Other fundamental choices: radiation pattern and and energy-energy correlation

Srad[n̂] =
∑
i
Ei δ

2
(
n̂ − n̂(~ki)

)

SEEC(n̂1, n̂2) =
∑
i,j
EiEj δ

2
(
n̂1 − n̂(~ki)

)
δ2

(
n̂2 − n̂(~ki)

)
.

Perhaps surprisingly, we can treat the delta functions as if they were smooth, and if we
integrate over n̂1 . . ., with these we can generate any weight function.
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D. Briefly: Infrared safety and beyond at the EIC.

• Jet cross sections at the EIC are factorized products of parton distributions and IR safe
sums over final states:

σ(p, q, kjet) =
∑

partonsa

∫ 1

x
dξfa/p(ξ, µ)ωe+a→jet+X (ξp, q, kjet)

• ∫
dx cand PDF fa/p an be generalized to TMDs for appropriate observables.

• These and more exclusive cross sections involving jets can probe the “initial state” struc-
ture of nucleons and nuclei, precisely because the jets reflect energy flow established at
short distances.

• Jet substructure encodes both perturbative and nonperturbative dynamics of how the
energy of a scattered quark emerges as hadrons.

• Planned particle identification and momentum capabilities may make possible tests of
theories of hadronization in vacuum and in nuclei.
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• With a firm basis of IR safety in sufficiently inclusive cross sections, the way will be open
to study how perturbative probability distributions are “redistributed” at long times by
nonperturbative processes.

• Very likely advanced data analysis, and in time quantum simulations will play a role in
the decoding of particle jets.
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