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Abstract. The increasing volumes of data produced at light sources such as 
the Linac Coherent Light Source (LCLS) enable the direct observation of 
materials and molecular assemblies at the length and timescales of molecular 
and atomic motion. This exponential increase in the scale and speed of data 
production is prohibitive to traditional analysis workflows that rely on 
scientists tuning parameters during live experiments to adapt data collection 
and analysis. User facilities will increasingly rely on the automated delivery 
of actionable information in real time for rapid experiment adaptation which 
presents a considerable challenge for data acquisition, data processing, data 
management, and workflow orchestration. In addition, the desire from 
researchers to accelerate science requires rapid analysis, dynamic integration 
of experiment and theory, the ability to visualize results in near real-time, 
and the introduction of ML and AI techniques.  We present the LCLS-II 
Data System architecture which is designed to address these challenges via 
an adaptable data reduction pipeline (DRP) to reduce data volume on-the-
fly, online monitoring analysis software for real-time data visualization and 
experiment feedback, and the ability to scale to computing needs by utilizing 
local and remote compute resources, such as the ASCR Leadership Class 
Facilities, to enable quasi-real-time data analysis in minutes.  We discuss the 
overall challenges facing LCLS, our ongoing work to develop a system 
responsive to these challenges, and our vision for future developments.   

1 Introduction 
 In 2009, the Linac Coherent Light Source (LCLS) facility, the world’s first X-ray free-
electron laser (XFEL) began operations at SLAC National Accelerator Laboratory and has 
had a profound impact on a broad cross-section of scientific fields [1-4]. XFELs provide 
X-ray beams at wavelengths on the atomic scale and over nine orders of magnitude 
brighter [5] than a synchrotron source.   The ultrafast x-ray pulses (<5-500 fs) from LCLS 
give researchers the tools to probe complex atomic and molecular structures using 
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individual pulses, revealing the fundamental processes of biology, chemistry, physics, 
materials, and other phenomena providing atomic resolution with femtosecond precision 
and chemical specificity.   
 The LCLS-II upgrade, coming online in late 2023, increases the repetition rate from 
120 Hz to ~1 MHz.  The adoption of ultra-high repetition rate imaging detectors will 
further increase the data throughput from today’s 1 - 5 GB/s to >200 GB/s.  Future planned 
upgrades are expected to increase the throughput to multiple TB/s.  The intrinsic pulsed 
nature of the FEL source requires experimental solutions that acknowledge that every 
shot is different and that a broad suite of information needs to be recorded to interpret a 
single-shot event.  Further, LCLS can provide ultrashort pulses, which introduce the 
challenge of recording and indexing all scattered photons that emerge from a sub-100 fs 
pulse.  Imaging detectors developed for the FEL [6] require careful signal correction 
(pedestal, gain, crosstalk, nonlinearity, geometry) to correctly interpret the science data.  
A timing system distributes a global timestamp and unique pulse identifier for each x-ray 
pulse that comes down the line to interact with the sample in the endstation.  Every 
detector participating in the data acquisition receives this trigger and applies a unique 
timestamp to the data associated with each pulse. Data from different sensors that belong 
to the same timestamp, or event, can later be re-assembled and analysed in the same 
context by the offline processing, a process called event building. The LCLS Data System 
provides the capacity to reduce the data volume on-the-fly using experiment-specific data 
compression. Figure 1 shows the anticipated increase in raw and reduced data rates as a 
function of time. 

  
Fig. 1. The red line shows the instantaneous throughput LCLS-II produces as a function of time, 
showing the increase, due to instrument and detector upgrades from ~250 GB/s in 2023 to over 1 
TB/s by the end of the decade.  The blue line shows the instantaneous throughput after applying 
experiment-specific data reduction.  

Data acquisition, data transport, event building, data management, and workflow 
orchestration at LCLS echo the infrastructure needs of high energy physics and other 
high throughput, computationally demanding endeavours.  



 

 

2 LCLS-II Challenges 
 Advanced data and computing systems are playing an increasingly vital role in LCLS 
operation, data interpretation and overall scientific productivity.  The convergence of 
advances in hardware architectures, development of AI/ML methods, and improvements 
in computational capabilities provide an opportunity to accelerate science, leverage large 
datasets, and optimize the use of oversubscribed beamtimes.  LCLS-II represents SLAC’s 
largest data and computing challenge, characterized by a variety of time-sensitive and 
data integration-intensive workflows.  The LCLS Data System provides the infrastructure 
to acquire very high throughput data, transport tens of GB/s of data to disk, cache up to 
1 PB of data per shift, manage up to 100 PB of data on disk, provide access to sufficient 
computing resources for analysis, and provide sophisticated analysis frameworks for data 
access [7-8]. The increase in repetition rate due to LCLS-II introduces a step change in 
the size and complexity of data sets and demands a similar advance in computing, 
algorithms, and analysis to fully exploit the incredibly rich information content 
contained in this data.   

Computing demands at LCLS are driven by the repetition rate of the source, 
advances in detector technology, advances in data analysis algorithms, and the 
requirement to provide flexible and easy-to-use fast feedback to users in real time, a 
challenge given the weekly turnaround of experiments and the one thousand users 
cycling through the LCLS facility each year.  The data life cycle and computational needs 
of the typical LCLS user vary from experiment to experiment, but on average can be 
described as follows.  A typical experiment is of order 3 – 5 days of 12-hour shifts.  Users 
are responsible for setting the goals of the experiment and work in partnership with 
beamline scientists and facility staff to operate the beamline and acquire the desired data 
during their scheduled beam time. Experiments are short, on the order of days, and 
oversubscription makes it difficult to repeat an experiment at a future date. Likewise, 
once a measurement begins it cannot be slowed down or stopped if the architecture and 
data pipelines cannot keep up with the required data rates.  

During data collection, it is essential for the users and beamline scientists/staff in 
the control room to have access to real-time feedback (~1 sec), for example visualization 
of a camera image to ascertain whether an ice crystal is forming at the end of a sample 
delivery nozzle.  Likewise, users must be able to get data quality feedback within about 1 
– 10 minutes, the lifetime of a measurement to optimize the experimental setup for the 
next measurement.  Data quality monitoring is computationally more sophisticated than 
the real time monitoring requirements, answering questions that require some 
manipulation of the data and/or the combination of several sources of data.  For example, 
crystallographers may want to know whether a 10-minute acquisition period contained 
an adequate number of single-hits and indexable crystals.  Are there enough statistics 
available to reconstruct the electron density?  Is the signal to noise ratio as expected?  Is 
the resolution of the reconstructed electron density what was expected?   

During the 12 hours off shift, the users continue to analyse the data and may run as 
many as ten passes of the full analysis over the data acquired during the previous 12-hours 
to optimize analysis parameters and prepare analysis code for the next shift. During the 
4 months after the experiment, users analyse the raw and intermediate data on fast access 



 

 

storage in preparation for publication.  After 4 months, data are archived to tape where 
they are kept for a period of 10 years and may be restored to disk at any time, a feature 
that is increasingly exercised as AI/ML becomes more widely used. 

LCLS Data Systems has developed a world-leading capability in high throughput 
data analytics consistent with the leap to 1 MHz operation, and providing fast feedback 
capabilities, real-time data visualization, and configurable, cutting-edge data analysis 
pipelines for researchers.  Table 1 shows a summary of the LCLS-II data challenges.  

Table 1. Summary of LCLS-II data and computing characteristics. 

Description LCLS-II 2023 LCLS-II 2029+ 

Readout rate 0.01 Hz - 1 MHz 0.01 Hz - 1 MHz 

Wanted fraction of collisions 0.01 to 1.0 0.01 to 1.0 

Typical experiment duration (same data-
taking conditions) 

3 days 3 days 

Required turnaround for data-quality checks 
Seconds to 

minutes 
Seconds to 

minutes 

Raw digital data rate 200 GB/s 1000+ GB/s 

Zero-and-Junk-suppressed rate 20 GB/s 100+ GB/s 

Storage need dominated by Mainly raw data 

Role of Simulation Growing in science analysis 
Growing in experiment design 

Analysis, Simulation, and Workflow Software 
development community 

Individuals (in the past) 
® Organized effort 

 

LCLS Data Systems provides seamless access to computing, making use of local compute 
resources as well as ASCR compute and networking capabilities when required.  These 
capabilities shorten the time between experiment and publication and provide 
researchers easier access to scientific data and the computing required to analyse it.  

3 The LCLS-II Data System 
 The basic architecture of the data system is shown in Figure 2.   The LCLS facility 
provides core hardware and software infrastructure for scalable data acquisition, online 
monitoring, offline analysis, and data management enabling scientists to efficiently go 
from measurement to scientific insight. The users provide the last mile and, using their 
science domain knowledge, develop their own analysis on top of this stack.    



 

 

 
Fig. 2. The basic architecture of the data system shown here illustrates the flow of the data from 
the front-end electronics on the left to the storage and processing layers on the right.   

LCLS instruments shown in Figure 3 offer unique instrumentation to study different areas 
of science – ranging from atomic and molecular science, ultrafast chemistry and catalysis, 
advanced materials, structural biology, high-energy density science, to photon science – 
all instruments use an instance of the same basic data systems architecture for readout, 
storage, and data processing.   

 
Fig. 3.  The suite of LCLS X-ray instruments each have unique capabilities designed to provide a 
diverse experimental landscape for probing ultrafast dynamics. 

The LCLS user facility cycles through ~1,000 users and of order 100 experiments every 
year. Despite this diversity, the data system can accommodate the sensor quantities and 
configurations required as well as the various throughput and computational needs of 
all experiments, such as those shown in Table 2.   



 

 

Table 2. Examples of compute-intensive workflows showing, for 2023 and 2026, 1) throughput 
generated at the detector (unreduced), 2) expected computational needs for data reduction to 
achieve an average reduction in data volume of 10x, and 3) an estimate of computational needs for 
offline analysis of the data by the user.  These are referred to as Level 1, 2, and 3. 

Description 
LCLS-II 2023 LCLS-II 2026 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

Coherent Scattering 
(XPCS, XSVS) 

20 GB/s 4 TF 34 TF 80 GB/s 34 TF 270 TF 

Liquid Scattering 40 GB/s <1 TF 20 TF 320 GB/s <1 TF 50 TF 

Resonant Inelastic 
Scattering 

20 GB/s 4 TF 1 TF 200 GB/s 40 TF 2 TF 

X-ray Emission 
Spectroscopy (XES) 

1 GB/s <1 TF 2 TF 10 GB/s <1 TF 20 TF 

Coincidence 
Spectroscopy 200 GB/s <1 TF <1 TF 200 GB/s <1 TF <1 TF 

Nonlinear Spectroscopy 20 GB/s 3 TF <1 TF 80 GB/s 16 TF <1 TF 

3.1 Data Acquisition (DAQ)  

 Data flows from a variety of detectors arranged around endstations within each 
instrument.  These endstations may be reconfigured weekly with different sensors added 
and of order tens of sensors read out through the DAQ.  The sensors are a combination 
of commercial cameras, SLAC-built custom cameras [7-10], waveform digitizers, or point 
values of temperatures, voltages, pressures, etc. All sensor data flows through a computing 
layer called the Data Reduction Pipeline (DRP) which reduces the data volume on-the-
fly by an order of magnitude on average using experiment-specific techniques.  Online 
analysis of scientific data is vital feedback to the operation of LCLS experiments which 
require real time tuning of components for beamline operation. The Analysis Monitoring 
Interface (AMI) [11-13] software framework provides real time (<1 second) analysis of 
the acquired data and is implemented on a scalable set of monitoring nodes connected to 
the same network which connects the DRP nodes.  AMI provides both a graphical and a 
scripted interface.  Users primarily interact through a graphical user interface (GUI) used 
to configure and display analysed information on-the-fly, but users may also choose to 
run their analysis python scripts in real-time on the “live” data feed.  AMI operates on 
data event built from the sensor data received over the InfiniBand data network from the 
DRP.  A statistical subsample of the data passing through the DRP is read from memory 
and presented to the user for analysis providing a valuable tool for real time feedback and 
validation of the DRP performance and parameters.  Data are then written to Non-
Volatile Memory Express (NVMe) devices in the Fast Feedback (FFB) Layer where data 
are locally cached awaiting transfer to offline storage.  Depending on the computational 
needs of the experiment, data are transferred either to disk storage on the SLAC Shared 
Science Data Facility (S3DF) [14] for Petascale experiments or disk storage at a remote 
High Performance Compute (HPC) Facility for Exascale experiments.     



 

 

3.2 Automated Data Movement and Run Processing 

The LCLS data system handles the transparent data movement within several layers 
of computing in the pipeline from the Detector Edge (FPGA/ASIC) through the data 
reduction compute layer (CPU, FPGA, GPU), to the data cache FFB Layer where it is 
accessible to users for fast feedback analysis for approximately 1–5 shifts. From the data 
cache, the first persistent storage layer, data is automatically transferred by the data 
system to offline storage using bbcp [15] and xrootd [16], where the data remain on disk 
for 4 months post experiment. Data is also automatically archived to tape where it 
remains for 10 years. A second copy of the data is held on tape at NERSC. LCLS provides 
space for all experimental data at no additional cost to the user.  LCLS-I (120 Hz) datasets 
are between 1 - 50 TB in size, but LCLS-II datasets are expected to be about 1 PB per shift 
and up to several petabytes per experiment.  

 

Fig. 4 The LCLS data management system is shown.  The user interface (left) consists of a web 
browser for logging, configuring analysis, and viewing results, online monitoring software (OM 
and AMI), and optional Zoom for remote participants.  The internals of the data management 
system shown in the LCLS (center) panel are opaque to the user and fully automated.  Data are 
acquired and automatically transferred to the designated HPC where workflows are triggered.  
Results are migrated back to the web browser on the user (left) side. 

Figure 4 shows the key features of the LCLS Data Management System which includes 
authentication/authorization for users, a file catalog based on Rucio [17], an electronic 
logbook for experiments, an experiment database with the capacity to automatically 
capture metadata at the point of data acquisition, a sample database, a workflow manager, 
feedback and reporting tools for users, instrument operator portals, and automated run 
processing capabilities.  The user interacts with the system through a web browser.  The 
web services allow an experimenter to monitor the flow of data from the DAQ through 
the FFB to disk storage and tape archival.  The user configures their analysis in the 
browser, and the data management system takes care of the rest, automatically 



 

 

transferring the data, using SLURM to launch thousands of parallel jobs on remote HPC, 
monitoring the status of the jobs as they run, and returning the results back to the user 
as they are accumulated.    

Analysis is performed by user teams using available computing resources.  For each 
experiment technique, the LCLS Data Systems team, in collaboration with beamline 
scientists and science domain experts, benchmarked likely techniques for data reduction, 
fast feedback (data quality monitoring) and offline analysis and factored in user re-
processing of data to evaluate computing requirements for LCLS-II experiments.  The 
results are summarized in Figure 5 which shows computing requirements as a function 
of fiscal year, from FY23 – FY31.  The size of the bubble represents the percentage of 
experiments that will require a particular scale of computing in a particular fiscal year.   

 
Fig. 5. LCLS computing requirements for experiments as a function of Fiscal Year are shown as a 
bubble chart.  The size of each bubble represents the percentage of experiments that require a 
specific amount of computing for their analysis.  Most experiments require < 5 PFLOPs.  A handful 
of experiment require significantly more compute resources, which are unavailable at SLAC’s S3DF.  
To support these experiments, LCLS will stream data to NERSC for analysis. 

For the 80% of experiments requiring Petascale resources, SLAC offers a local, mid-
scale computing facility called the Shared Science Data Facility (S3DF) for user analysis. 
Approximately 20% of experiments have computational requirements that cannot be met 
by the S3DF and must be offloaded to DOE ASCR facilities such as NERSC.  These will 
heavily leverage ESnet network resources to facilitate data mobility.  LCLS to S3DF/ASCR 
workflows are typically used to analyse raw data for data quality monitoring and 



 

 

experiment feedback or to do post-experiment analysis, archive LCLS data sets, 
train/retrain AI/ML models, transmit simulation data that can be used during the 
experiment, and to do multi-modal analysis.  

4 Time-Sensitive and Data-Intensive Patterns for Workflows 
Time-sensitive patterns for workflows require real-time or end-to-end performance 

with high reliability for timely decision-making or experiment steering. Data-integration 
intensive workflow patterns require combining and analysing data from multiple sources 
such as experiments and computational facilities.  LCLS workflows are both time-
sensitive and data-intensive, managing the transport, reduction, and analysis of high-
throughput data across a heterogeneous pipeline that spans facilities, often incorporating 
the results of simulations to inform experiment results.  LCLS requires transparent 
solutions that seamlessly link science instruments to compute facilities. 

4.1 On-the-fly data reduction:  Data Reduction Pipeline 

The volume of data produced by experiments is prohibitively expensive to transport 
and store, making it necessary to reduce the data prior to writing it to persistent storage. 
LCLS has developed a data reduction pipeline (DRP) using a computing layer composed 
of FPGAs and CPUs, capable of extracting key features of the data using a toolbox of 
algorithms targeted to the expected experiment types. On-the-fly data reduction is 
accomplished using a performant library of algorithms designed to reduce data volume 
without compromising the scientific results.  Lossless compression, generic, all-purpose 
data reduction, and lossy compression [18] with tuneable error bounds are employed.  
Feature extraction such as sparsification (peak-finders, region-of-interest selection), 
calculation such as region-of-interest integration, angular integration, or binning 
integration, and data transformation into a space where data are sparse (wavelet JPEG 
style compression) are used to reduce the data volume from imaging detectors. The DRP 
contains the ability to event build a subset of events enabling the implementation of a 
software trigger or event veto, useful for experiments like crystallography and single 
particle imaging that may have a low hit rate.  This technique enables the veto of entire 
events based on user-defined criteria that distinguish between good and bad quality shots.   

The DRP pipeline reduces the data volume for many rapidly changing experiments, 
must be scalable up to the detector I/O maximum capabilities, and is easily configurable 
to accommodate rapidly changing experimental conditions. The DRP also provides a 
user-definable fraction of non-reduced events in addition to the reduced data for 
validation.  LCLS has developed the psana2 (based on psana [19]) analysis framework for 
accessing the data, handling parallelization across multiple nodes and cores and event 
building. Additional algorithmic tools can be seamlessly integrated on top of psana2 in 
the DRP to support various user needs, their parameters tuned for a specific experiment 
and run in highly parallelized fashion.  The LCLS data system can run psana-python in 
the DRP as well as offline making it easier for users to run the same analysis both online 
and offline.  Supporting tools such as robust real-time calibration, beam-position 



 

 

determination, per-shot jet-streak determination, and other per-event backgrounds are 
also necessary for proper event characterization.   

Data reduction confers several advantages beyond cost savings.  By applying 
experiment-specific veto, compression, and feature extraction, the overall throughput 
and storage requirements for the facility are reduced.  This makes it possible to move data 
more quickly to offsite computing facilities such as NERSC.  Furthermore, the offline 
processing farm required to keep up with the incoming data stream is smaller in size and 
simpler to maintain. Data reduction mitigates storage, networking, and processing 
requirements and reduces the time required to go from measurement to scientific insight.  
Finally, producing feature extracted data earlier in the pipeline provides actionable 
scientific insight to users or ML agents, enabling experiment steering.   

4.2 Intelligent Detector Systems 

LCLS needs streaming feature extraction on high-rate data from large imaging 
detectors to enable smart, autonomous experiments.  An architecture capable of real-time 
feedback built into the ASIC/FPGA tightens the coupling between experimental analysis 
and data acquisition [20]. Incorporating AI/ML techniques allows the optimization and 
prioritization of the data acquisition that maximizes the scientific return, but data 
reduction at the ASIC/FPGA level is challenging. ASICs and FPGAs may only see a 
fraction of the uncorrected image while the feature extraction algorithms are typically 
developed on fully calibrated and reconstructed images in the offline analysis.   
 The SparkPix-RT project develops a new family of experiment-specific detectors that 
seeks to overcome these obstacles and build a detector capable of extracting information 
in real-time and operating at the effective rate of 1 MHz, the natural production rate of 
the data.  Specifically, the SparkPix-RT project is developing intelligent auto-correction 
techniques, provisioning for buffering and deadtime to ensure that the pipeline can 
absorb some variability in performance, developing triggering capability, determining 
what kind of information extraction is feasible and developing AI/ML-based workflows 
for dynamic real-time experiment operation.   

4.3 ExaFEL:  Compute-intensive analysis of TB/s data 

The ExaFEL project has created an exascale-based data analysis workflow for serial 
femtosecond crystallography (SFX), leveraging exascale computing to reduce, from weeks 
to minutes, the time to analyse LCLS molecular structure x-ray diffraction data.  The high 
repetition rate and ultra-high brightness of the LCLS make it possible to determine the 
structure of individual molecules, mapping out their natural variation in conformation 
and flexibility, but the classification of diffraction patterns into conformational states, 
and subsequent reconstruction of a series of 3D electron densities, enabling the 
visualization of how the structure is changing, demand intensive computational analysis.  
The molecular structure is determined by merging the x-ray diffraction patterns from 
millions to billions of protein crystals exposed in random orientations. 

Exascale computing allows the diffraction pattern to be modelled with greatly 
enhanced detail, leading to very granular atomic resolution that follows the path of single 



 

 

atoms reacting within a large molecular complex.  Additionally, by streaming the 
experimental data to a supercomputing facility in real time, diffraction quality can be 
assessed in a matter of minutes [21]. ExaFEL has also created an automated analysis 
pipeline for imaging of single particles via diffractive imaging. This entails the 
reconstruction of a 3D molecular structure from 2D diffraction images using the new 
Multi- Tiered Iterative Phasing (MTIP) [22] algorithm. The LCLS Data Management 
System is employed to stream data automatically from SLAC to NERSC over ESnet, 
launch the highly parallel analysis jobs on the supercomputer, and report the results of 
the analysis back to the experimenters in quasi-real time.   

4.4 Connect scientific instruments and HPC to create smart instruments 

Autonomous operations at LCLS requires real-time actionable information that 
drives facility reaction to the experimental environment.  The Actionable Information 
from Sensor to Data Center project [23] integrates ML capabilities with the LCLS-II data 
flow, from the front-end electronics, to the DRP, to the HPC data center.  LCLS will run 
ML inference in the DRP at three levels of increasing sophistication:  in the CPU/GPU, 
in the FPGAs, and inference-specific ASICs.  In addition to the development of the 
overall infrastructure, the project developed the reconstruction of photo-electron spectra 
from attosecond angular streaking data, data extraction for SFX and SPI, and in-situ High 
Energy Diffraction Microscopy using ML.  Rapid analysis and closed loop control of 
experiments at light sources rely on the ability to update ML models rapidly in response 
to changes in an instrument or sample while an experiment is running. The infrastructure 
needed to deploy trained ML models on edge devices and leverage HPC to rapidly 
(re)train AI/ML models on Data Center AI Systems (DCAI) was also developed, taking 
the turnaround time for a new model from hours to seconds.  

5 .  Scientific Computing for Facilities 
ASCR’s Integrated Research Infrastructure Architecture Blueprint Activity [24] has 

created a vision of a DOE/SC integrated research ecosystem that transforms science via 
seamless interoperability.  LCLS infrastructure is poised to interface to such an 
architecture as it scales to meet the high-throughput, compute-intensive demand of 
LCLS-II.  Already, the data system is providing real-time data analysis capabilities in the 
form of data reduction and complex workflow orchestration including on-demand 
utilization of super-computing environments.  LCLS is developing a pipeline that spans 
from the detector edge to HPC and is strategically developing AI/ML for targeted 
applications.  Intelligent detector systems and real-time analysis will enable autonomous 
experiment steering and allow users to extract new scientific insight from massive data 
sets interpreting data in new ways at higher speeds. 
 
Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is 
supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences 
under Contract No. DE-AC02-76SF00515. This material is based upon work supported by the U.S. 
Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 
FWP-100643. 
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