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Abstract. The CMS experiment has been utilizing vectorization, or 
SIMD, in parts of its data processing applications for over a decade. On 
x86 platforms the vectorization level is still SSE3. In the past attempts to 
use wider vector instruction sets such as AVX or AVX-512 have, in 
practice, not resulted in improvements in the overall event processing 
throughput, because the CPUs scale down their frequency when processing 
AVX instructions. In addition, a notable part of the global pool of CMS 
resources has been old systems either not supporting AVX, or where the 
CPU frequency downscaling impacts all cores of the CPU. CMS has 
nevertheless continued to vectorize more of its application code, and in this 
work we review profiling methods we have found effective to find out 
pieces of code that would benefit from vectorization, and techniques to 
transform those codes such that the GCC compiler is able to auto-vectorize 
those codes. The build system used for CMSSW, Scram, has also been 
enhanced to be able to build code for multiple CPU microarchitectures 
such that the shared libraries of desired microarchitecture level can be 
loaded based on the CPU of the system. This multi-microarchitecture setup 
is invisible to the workflow management system, which makes its 
deployment straightforward. We describe in detail how this multi-
microarchitecture build is set up, and measure the impact of using wider 
vector units than SSE3 on the event processing throughput of CMS 
applications such as simulation and reconstruction on recent x86 CPUs 

1. Profiling CMSSW with Intel’s OneAPI Toolset 

The CMSSW [1] application uses Intel’s Thread Building Blocks (TBB) library to enable 
the use of multiple threads in it’s framework. Intel’s OneAPI Toolset [2] include a number 
of libraries and applications that can assist in optimizing software to use SIMD instructions. 
Intel Vtune [3] is used to profile the CMSSW application. Intel Vtune is the only profiler 
that stitches together TBB thread stack frames. Intel Advisor [4] is used to identify scalar 
loops with floating point operations that can potentially be replaced by SIMD instructions. 
Intel’s C++ Compiler Classic (ICC) [5] and small vector math library (SVML) [6] can 
produce more vectorization with the SSE3 instruction set but are not physics validated for 
use in CMSSW. Intel Advisor GUI offers a Vectorization Advisor pane, a Threading 
Advisor pane, a Survey pane with Source view of a floating point loop with timing, and a 
Survey pane with Assembly view of a floating point loop with timing.    

 2. Methods used to auto-vectorize with SSE3 instructions 
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Using Intel Advisor and Vtune, loops using floating point operations were identified in 
CMSSW application code. Modifications were made to these loops to enable the GCC 
compiler [6] to automatically use SIMD instructions, auto-vectorization, with the use of the 
SSE3 instruction set.  The GCC compiler diagnostics for auto-vectorization were used to 
count the number of loops that were vectorized with each change. Performance was 
measured with Intel Vtune, before and after changes, to ensure that changes reduced time 
spent in floating point loops. Some of the techniques used to achieve this included the 
following:

• Using temporary arrays to store loop calculation results for use in later loops in a 
function.

• Splitting a loop with many calculations into many smaller loops for each calculation. 
• Putting functions that could not be inlined in their own loop. 
• Putting functions that could be inlined in their own loop and using GCC pragma 

__strict__ to tell the compiler that the values of function inputs would not be changed in 
the function. 

3. CMSSW multi microarchitecture releases 

For production, CMSSW is optimized for the SSE3 instruction set, the lowest common 
instruction set for the mix of AMD [4] and Intel [5] CPU available on the LHC computing 
grid [6]. Optimizing for higher instruction sets and vector widths enables more loops to be 
vectorized, potentially increasing performance. The CMSSW build system was enhanced to 
produce three sets of libraries. These are compiled with the GCC -march flags sse3, haswell 
and skylake-avx512. The library set is chosen by an environment variable set by the 
CMSSW build configuration tool SCRAM [7] .

SCRAM uses the microarchitecture of the CPU on the computer where the application 
is run to set it. SCRAM then uses the environment variable to set LD_LIBRARY_PATH 
and PATH to the directories with library set compiled for that microarchitecture.  This 
environment variable can be overridden to allow the use of lower vector width instruction 
sets for performance comparison. The size of a multi microarchitecture release is at least 
three to four times the size of a single architecture release.

4. CMSSW multi microarchitecture performance 

A multi architecture release was build and installed on CVMFS. This release was used to 
run the CMSSW application on a desktop computer with an 11th Gen Intel Core i7 11700 
@ 2.50 GHZ [8] with boost clocks up to 4.9 GHZ. This CPU features 8 cores was with two 
threads per core and the avx-512 microarchitecture. The physics event generation and 
simulation of particle in the detector (GEN-SIM), digitization of simulated detector hits and 
high level trigger (DIGI-HLT)  and reconstruction of particles (RECO) processes of the 
CMSSW application were run using the conditions and detector geometry of the CMS 
detector during Run 3 operations. The number of processes and threads per process were set  
to occupy 8 (50%) and 16 (100%) of the available hyper threads on the CPU. The average 



throughput (events per second) per thread was calculated by dividing  the total number of 
events processed by the total cpu time of all processes. The average throughput for each 
CMSSW process and micro-architecture is  shown below for the 50% loaded node in Table 
1 and 100%  loaded node in Table 2.

Table 1. Throughput on 50% loaded node

Table 2. Throughput on 100% loaded node

The use of higher vector widths can cause the boost clock to be lowered for thermal 
management[9]. For the 50% loaded RECO process, the throughput is lower for higher 
vector widths. This indicates that the boost clock was used but lowered. For the 100% 
loaded RECO process, the throughput is higher for higher vector widths. This indicates that 
the boost clock was not used and the improvement from higher vector widths can be seen.

Micro-
architecture GEN-SIM DIGI-HLT RECO

default

0.079 
events per 
second per 

thread

0.087 events 
per second 
per thread

0.082 events 
per second 
per thread

haswell

0.090 
events per 
second per 

thread

0.099 events 
per second 
per thread

0.077 events 
per second 
per thread

skylake-
avx512

0.080 
events per 
second per 

thread

0.087 events 
per second 
per thread

0.078 events 
per second 
per thread

Micro-
architecture GEN-SIM DIGI-HLT RECO

default

0.056 
events per 
second per 

thread

0.053 events 
per second 
per thread

0.045 events 
per second 
per thread

haswell

0.051 
events per 
second per 

thread

0.053 events 
per second 
per thread

0.053 events 
per second 
per thread

skylake-
avx512

0.052 
events 

second per 
thread

0.052 events 
per second 
per thread

0.052 events 
per second 
per thread



5. Discussion and conclusions 

Only very select algorithms in the CMSSW application have been written explicitly to auto-
vectorize. CMS [12] has pursued research and development into high level trigger 
algorithms on GPU written in CUDA. The Alpaka [10] library was selected in order to 
make the HLT algorithms portable across GPU vendors. The Alpaka library also offers 
SIMD implementations. As more CMSSW algorithms are ported to Alpaka, multi 
microarchitecture builds may offer more benefits. The benefits of micro-architecture 
releases are minimal compared to the added cost of higher storage requirements. Therefor 
CMS continues to deploy builds optimized to the lowest common denominator micro-
architecture, SSE3, to the grid. Discussions within CMS have recently begun to deploy 
builds optimized to the x86_64-v2 [11] architecture by default with fallback to builds 
optimized to SSE3 architecture.  

This document was prepared by the CMS Collaboration using the resources of the Fermi National 
Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User 
Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. 
DE-AC02-07CH11359.
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