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Abstract. The Quantum Angle Generator (QAG) is a cutting-edge quantum
machine learning model designed to generate precise images on current Noise
Intermediate Scale Quantum devices. It utilizes variational quantum circuits
and incorporates the MERA-upsampling architecture, achieving exceptional ac-
curacy. The study demonstrates the QAG model’s ability to learn hardware
noise behavior, with stable results in the presence of simulated quantum hard-
ware noise up to 1.5% during inference and 3% during training. However, de-
ploying the noiseless trained model on real quantum hardware reduces accuracy.
Training the model directly on hardware allows it to learn the underlying noise
behavior, maintaining precision comparable to the noisy simulator. The QAG
model’s noise robustness and accuracy make it suitable for analyzing simulated
calorimeter shower images used in high-energy physics simulations at CERN’s
Large Hadron Collider.

1 Introduction

Quantum computing possesses revolutionary potential, offering accelerated computations and
tackling hitherto intractable problems [1]. In the present Noisy Intermediate Scale Quantum
(NISQ) era, quantum devices grapple with hardware errors, connectivity constraints, and
limited qubits [2]. While practical quantum advantage remains challenging, efforts to opti-
mize algorithms for NISQ-era constraints are under intensive exploration. Quantum Machine
Learning (QML) emerges as a promising domain, showing resilience to noise and yielding
favorable outcomes on NISQ devices [3].

High Energy Physics (HEP) experiments, like those at CERN’s Large Hadron Collider
(LHC), demand extensive simulated data for precise results [4]. To address this, CERN
maintains the world’s largest computing grid [5]. Machine Learning (ML) models provide
faster outcomes than traditional simulations, without compromising accuracy. Quantum Ma-
chine Learning (QML) shows potential in meeting simulation needs [6, 7]. QML leverages
quantum circuits, capitalizing on properties like superposition and entanglement, potentially
surpassing classical neural networks [8]. Moreover, QML excels in representing complex
distributions using fewer parameters, thanks to its expansive phase space.

Yet, encoding classical data efficiently into qubit states presents a significant hurdle [9].
Several techniques exist, each with strengths and weaknesses, dependent on the application
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[9]. Theoretical benchmarks suggest linear scaling between qubits and features for quantum
advantage [10]. However, techniques exceeding linear scaling often face limitations, such as
amplitude encoding’s inability to provide absolute energy values for NISQ-based image gen-
eration. Current quantum generative models like Quantum Circuit Born Machine (QCBM)
[11], Quantum Variational Autoencoders [12], and various quantum Generative Adversarial
Networks [13—15] grapple with scalability and fidelity. In contrast, our Quantum Angle Gen-
erator (QAG), initially proposed in [16], employs angle encoding, maintains linear scaling,
and offers high-fidelity outcomes on noisy quantum devices.

High-energy physics simulations primarily rely on resource-intensive Monte Carlo meth-
ods and the Geant4 toolkit [17]. These methods heavily load the LHC Computing Grid [18].
With upcoming LHC advancements, a surge in simulation demands might surpass current
computing budgets [19, 20]. Machine learning, augmented with quantum devices, presents a
promising alternative, potentially reducing simulation times and enhancing accuracy [21-23].

Electromagnetic calorimeters, pivotal to HEP detectors, measure particle energies and
significantly contribute to simulation times [18, 24]. Their outputs, termed "shower images,"
entail 3D spatial representations. In this study, we focus on one-dimensional, eight-pixel
representations of 25 x 25 x 25 pixel images from [25], targeting energy ranges between [225,
275] GeV. The processed dataset, divided into training and test subsets, is detailed in [26].

2 Quantum Angle Generator

The Quantum Angle Generator (QAG) is a Quantum Machine Learning (QML) model that
employs angle encoding for precise image generation. It utilizes variational quantum cir-
cuits, using an decoding strategy illustrated in figure 1. Qubits start in basis state |0) and pass
through a Hadamard (H) gate for superposition, followed by a y-rotational (R,) gate intro-
ducing randomness for new sample generation. R, gate angles Q are randomly drawn from
[—1, 1] uniform distribution and pixel-wise scaled by training data’s pixel standard deviations
for suitable energy variations. For diverse particle energies, Q2 angles are further multiplied
by a random value in [-0.25,0.25]. The trainable part of the QAG model comprises unitary
transformations via quantum circuits, explored in section 3.

2.1 Model description

To convert quantum states back to classical energies via angle encoding, the model undergoes
multiple executions with quantum state measurements, determined by the number of shots
nbgnes. Measurement frequency of state |0) calculates scalar intersection I on the Bloch
sphere’s z-axis.

On the Bloch sphere’s x-z-plane, angle 6 is zero at |+) state and clockwise rotation yields
positive values. This is shown in figure 1, depicting state [V}, intersection I, and angle 6 for
a single qubit. Angle 6 transforms into pixel energy E as follows:

(Emax - Emin)(e - Gmm)

Hmax - Gmin

E= (1

It’s important to mention that 6 and thus E are discrete. The precision and resolution of
6 increase with the number of shots nbg,,;. Currently, IBMQ devices allow up to nbgys =
100,000 shots. This research indicates 512 shots offer satisfactory resolution.

2.2 Training the model

The QAG model utilizes two objective functions during training. Firstly, the Mean Maximum
Discrepancy (MMD) loss [27, 28], previously employed in quantum models like the QCBM
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Figure 1. On the left, we observe the transformation of an illustrative state denoted as ¥ into an angle
6. On the right, a decoding example for an angle 6 is presented with its corresponding energy value.

[11], offers promising average shower distributions. However, its performance in detailed
aspects, such as pixel correlation, was suboptimal. To address this, a correlation (Corr) loss
was introduced, computed using the mean squared error (MSE) between the pixel correlations
of the training and generated data.

For training, we used the Simultaneous Perturbation Stochastic Approximation (SPSA)
optimizer [29], which streamlines optimization with two steps per epoch. Hyperparameters
were optimized using the Optuna [30] library. All experiments were conducted on Qiskit
version 0.26.2. The models underwent 500 epochs of single-batch training. The MMD loss
weight, starting at one, decays at a rate of —0.001 per epoch from the 100th epoch, while the
Corr loss weight ascends from zero at the same rate. The batch size, initially generating a sin-
gle image, was increased to 20 images post the 100th epoch for better Corr loss computation.
Training and inference were done with 512 shots. The SPSA optimizer had an initial learning
rate ¢p = 1 which decayed exponentially by 0.006 from the 50th epoch. These configurations
exhibited the best outcomes in our tests.

3 Quantum Circuit Architecture

Optimal circuits should balance minimal parameters with accuracy. We evaluated diverse
circuit architectures using key metrics. These architectures employ trainable rotational gates,
particularly focusing on Ry gates for y-axis angle encoding. Some variants included extra
R, gates or deeper structures (d2) for potential enhancements. Our mainstay is two-qubit
controlled-not gates (cx gates) from IBM Quantum (IBMQ) devices.

Our study’s metrics encompass trainable parameters N),, expressibility X, and entangle-
ment capability E. We explore if smaller circuits can match the accuracy of larger ones,
despite fewer parameters. Expressibility (1 — X), measures state representation proficiency;
values nearing 1 are favorable. Entanglement capability E quantifies the circuit’s skill in
generating entangled states, with 1 as the ideal.

For the calorimeter investigation, we assess outcomes (figure 2) comparing mean square
errors (MSEs) among circuits. This MSE measures Geant4 and QAG image disparities, aver-
aged over 25 trials per circuit, excluding best and worst outcomes. MERA-up, MERA-up-d2,
and MERA-up-Rz circuits exhibited the lowest MSEs, consistent with their elevated X and
E values. Although MERA-up-Rz stands as the top performer, the MERA-up circuit delivers
comparable results with only half the parameters. Consequently, we adopt the MERA-up
circuit for QAG model training in our research.

4 Accuracy Analysis

In this section, we delve into a comprehensive evaluation of the QAG model’s capabilities uti-
lizing the MERA-up circuit architecture. Our analysis presents customary accuracy metrics
pertinent to calorimeter simulation within the field of high-energy physics.
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Figure 2. The uncertainty in Mean Squared Error (MSE), where lower values indicate better perfor-
mance, across different trained circuit architectures is illustrated concerning N, (left), X (middle), and
E (right). Optimal regions are highlighted by green rectangles.

4.1 Training evaluation

The MMD loss remains consistently steady across all training repetitions, with its standard
deviation (STD) tightening as training unfolds. Both the MMD and Corr losses exhibit
smooth evolution, indicating the stability of the QML training process. It’s worth noting
that while the MMD loss takes precedence throughout the training journey, the Corr loss
plays a pivotal role in generating precise physics within the simulated images.

In figure 3, the unweighted loss functions are showcased over training epochs. This visual
representation aggregates twenty training runs into a bold line, complemented by a shaded
band denoting the standard deviation (STD). Noteworthy is the fact that the Corr loss starts
affecting training only from the 100th epoch onward, since it is initialised with weight zero.

4.2 Inference evaluation

We continue with a comparative analysis, evaluating images generated by the best-trained
model against Geant4 test data, encompassing a dataset of 980 images.
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Figure 3. The average and optimal statistical metrics throughout the training process for both utilized
loss functions. The correlation loss is introduced during the 100th epoch to enhance performance, while
the training stabilizes and converges by the 500th epoch.

Focusing on the first aspect, the evaluation encompasses the average calorimeter shower
shape, which is depicted on the left of figure 4. Impressively, the QAG model faithfully
replicates the shower shape with a remarkable MSE of 0.00059 + 0.00037.



Moving on, our analysis extends to pixel-wise image correlation, capturing both positive
and negative patterns among pixels. Geant4’s baseline correlation pattern is illustrated in
centre of figure 4, whereas the QAG-generated data correlation is showcased to the right.
The QAG model mirrors the overall correlation pattern, effectively reproducing intricate pixel
relationships of the shower images.

Furthermore, the evaluation involves energy sums across individual image pixels. Figure
5 exhibits QAG’s accurate replication of Geant4’s Gaussian-shaped energy sum histogram,
confirmed by the alignment of mean () and standard deviation (o) values.

Addressing the model’s ability to capture specific image modes, we examine k-means
clusters. Geant4 data undergoes k-means clustering, revealing four distinct image modes as
shown in figure 5. These modes showcase varying energy fractions in different calorimeter
cells. Our interest lies in assessing whether the QAG model can replicate this behavior, and
indeed, the QAG-generated image’s four clusters (figure 5) exhibit a comparable structure,
demonstrating commendable accuracy in reproducing energy content and image modes.
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Figure 4. The left figure presents visualizations of the average calorimeter shower shapes. Energy
is presented in arbitrary units (a.u.) due to image downsampling. In the center figure, a pixel-wise
correlation plot is displayed between Geant4, and in the right figure, the same plot is generated for the
QAG model.
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Figure 5. On the left, there is the energy sum histogram. In the center, the four k-means clusters that
manifest within the images generated by Geant4. On the right, the same cluster analysis is presented
for the QAG model, where the general shapes are correctly reproduced.

5 Quantum Noise Study

In the current NISQ era, high hardware error rates constrain the effective application of al-
gorithms on quantum devices. Similar to classical scenarios, Quantum Machine Learning
(QML) models display a degree of noise resilience amid hardware errors. Here, we examine
the noise robustness of the QAG model, both in training and inference. Real quantum devices
with measured noise levels are used for comparison with simulations.

5.1 Inference
Initial analysis applies quantum noise to inference in a noise-free model. Three noise sce-
narios are tested: simulated noise levels, simulated noise reflecting hardware traits, and real



quantum hardware noise. Simulated noise involves readout and inter-qubit connection errors.
Hardware noise varies for qubits and gates.

Multiple noise levels (0% — 15% error) are tested using MSE for accuracy (blue triangle
in figure 6). Configurations show mean of 20 images with standard deviation. Accuracy
remains stable until about 1.5% noise. Green (readout only) is robust up to 8% noise. Blue
(CNOT only) and orange (combined) fare worse.

The analysis expands to simulating ibmg-montreal device noise, having 27 qubits with
average readout and gate noise (blue point in figure 6). It aligns with simulations, suggesting
noise-resilient training for accurate noisy hardware inference.

Real ibmg-montreal inference (red point in figure 6) performs worse than simulations.
This might be due to unaccounted two-qubit entanglement gates in quantum circuit decom-
position, absent in hardware noise simulations.
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Figure 6. Exploring Noise levels during inference: Noise levels are plotted on the x-axis, while Mean
Squared Error (MSE), a measure of accuracy (lower values are superior), is depicted on the y-axis.
Inference is conducted across diverse noise configurations using real quantum hardware.

5.2 Training

The noise analysis extends to including noise during the training phase, to measure the QAG
model’s noise resilience on real quantum devices. Results are in figure 7. Both readout noise
(green) and CNOT noise (blue) maintain accuracy up to around 3%. The combined noise
(orange) shows a small decline from 1%, gradually decreasing. Yet, at 3% noise, accuracy
remains near noiseless baseline within one standard deviation, suggesting noise-enhanced
training improves model robustness.

Simulations involve two 27-qubit quantum devices: ibmg-montreal and ibm-cairo,
the latter having an advanced processor. Training is repeated ten times, producing blue and
orange points (figure 7). Hardware noise training slightly lags behind simulated noise model
accuracy (orange line). Aligned noise simulation and hardware noise errors (orange and blue
error bars) indicate insignificant accuracy differences.

During the final stage of training, we implement the model on real quantum devices. An
interesting occurrence takes place while using the ibmq-montreal device, where unexpected
spikes in readout noise, amounting to around 8%, emerge around epoch 280. These spikes
have a noticeable impact on the MMD loss, as depicted in figure 7. However, the model
demonstrates its adaptability by mitigating this loss over time.

Moving on to the training using the ibm-cairo device, represented by the green triangles,
we observe a stable training process with no significant changes. The hardware noise in this
case is slightly lower compared to the previously mentioned scenario.

Comparing the hardware-based training on ibm-cairo (green) to the simulations (or-
ange), we find that the former exhibits slightly lower noise. This outcome reinforces the idea
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Figure 7. Exploring Noise during training: An investigation involving diverse noise configurations,
encompassing hardware noise simulations as well as training on actual hardware. The training iterations
with artificial noise levels are conducted ten times.

that the alignment between the hardware and the simulation holds true, especially at low noise
levels.

Real hardware training surpasses prior inference in absolute MSE (= 0.002 and ~ 0.003
vs. ~ 0.005), showcasing QAG’s adaptability in noisy hardware. ibmg-montreal training
initially declines but recovers, supporting QAG’s resilience.

6 Conclusion

This study establishes the competence of the recently developed QAG model in producing
images with remarkable precision, as corroborated by diverse validation metrics. Beyond
accurately capturing average values, the model adeptly reproduces intricate pixel-wise corre-
lations using the optimal MERA-up quantum architecture, indicating its capability to discern
intrinsic correlation patterns from training data.

The investigation underscores the notable influence of quantum hardware noise on quan-
tum machine learning model accuracy. Notably, training models with noise yields improved
performance (stable until 3% noise), as the QAG model adapts to noise patterns, resulting
in faster convergence—contrasting the outcome of noise application solely during inference
(stable until 1.5% noise). This observation is consistent with ibm-cairo hardware training
outcomes. Moreover, the study underscores the QAG model’s robustness, showcasing its
ability to yield accurate results despite significant hardware calibration shifts of up to 8%
noise, as demonstrated in the ibmg-montreal training.

In essence, the novel QAG model’s resilience when trained with realistic quantum hard-
ware noise highlights its potential to establish sturdy models delivering accurate outcomes.
This outcome holds crucial implications for the advancing landscape of real-world quantum
machine learning applications.
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