
Optimising the Configuration of the CMS GPU Reconstruc-
tion

Abdulla Ebrahim1,∗, Andrea Bocci2,, Wael Elmedany1,, and Hesham Al-Ammal1,

1University of Bahrain
2CERN

Abstract. Particle track reconstruction for high energy physics experiments
like CMS is computationally demanding but can benefit from GPU acceleration
if properly tuned. This work develops an autotuning framework to automati-
cally optimise the throughput of GPU-accelerated CUDA kernels in CMSSW.
The proposed system navigates the complex parameter space by generating
configurations, benchmarking performance, and leveraging multi-fidelity op-
timisation from simplified applications. The autotuned launch parameters im-
proved CMSSW tracking throughput over the default settings by finding opti-
mised, GPU-specific configurations. The successful application of autotuning
to CMSSW demonstrates both performance portability across diverse accelera-
tors and the potential of the methodology to optimise other HEP codebases.

1 Introduction

Performance autotuning is an effective technique for optimising applications by automatically
finding optimal configurations. Autotuning frameworks explore a search space of parameters
like thread block sizes, iteration counts, etc. to maximize a performance metric like through-
put or latency [1].

Autotuning has proven particularly useful for GPU computing. GPUs have complex pro-
gramming models and numerous configurable parameters that affect performance. Manually
tuning these parameters is infeasible for large applications. Autotuning provides a principled
approach to navigate the optimisation space. It has achieved significant speed-ups for various
GPU workloads including deep learning, stencil computations, graphics, and more [2].

One application that can benefit from GPU autotuning is the Compact Muon Solenoid
(CMS) experiment’s reconstruction software. The CMS detector at the Large Hadron Collider
(LHC) produces enormous amounts of data that must be processed to reconstruct particle
trajectories. To accelerate reconstruction, CMS exploits GPUs by offloading tracking and
other algorithms to GPUs [3].

In this work, we develop an autotuning framework for the CMS High-Level Trigger (HLT)
reconstruction software containing multiple GPU kernels. Our goal is to demonstrate signif-
icant gains in end-to-end throughput compared to default configurations via rigorous auto-
tuning. The autotuned software can then be deployed to improve experiment efficiency and
physics analysis.

∗e-mail: asubah@uob.edu.bh



2 Related Work

Efforts to optimise the configuration of computer programs have been the focus of many
research studies, as they play a crucial role in speeding up high computational tasks. For
example, Ansel et al. [4] developed OpenTuner, an extensible framework for program auto-
tuning, which aims to automate the process of finding the best set of parameters for a given
program to optimise its performance.

Multi-fidelity optimisation reduces the cost of evaluating expensive models by first uti-
lizing cheaper low-fidelity models. For example, Lindauer et al. [5] used multi-fidelity to
tune hyperparameters in neural network training. We employ similar concepts to accelerate
CMSSW autotuning using a simplified GPU track reconstruction framework in place of the
low-fidelity model.

In this paper, we explore the application of performance autotuning techniques to optimise
the performance of CMSSW GPU kernels for track reconstruction. Our aim is to demonstrate
that autotuning can lead to significant improvements in throughput performance, thereby en-
hancing the scientific productivity of the CMS experiment.

3 Methodology

In this section, we describe the experimental methodology for developing and evaluating our
proposed autotuning framework [6]. First, we provide an overview of the autotuning work-
flow and key components of our approach. Next, we discuss how the parameter search space
was defined based on the configurable dimensions of the CMSSW GPU kernels. We then
detail the multi-fidelity optimisation strategy leveraged to accelerate the tuning. Finally, we
outline the experimental setup including the CMSSW software versions, GPU hardware, and
other software configurations used for evaluation. The methodology provides a comprehen-
sive view of our techniques, to enable reproducibility.

3.1 Autotuning Framework

  

Autotunign Script

Configuration 
Manipulator

Results 
Database

Runner

Optimiser

Results 
Manager

CMSSW
Configuration 

File

CMSSWBenchmarking 
Script

      Generate

Execute

Store / Read

Execute / Throughput

Read

CMSSW

Figure 1. An illustration of the autotuning framework used in this work

Our autotuning framework, as seen in Figure 1, is based on OpenTuner [4], and it com-
prises four main components: configuration manipulator, runner, optimiser, and results man-
ager. The configuration manipulator is responsible for generating CMSSW configuration



Table 1. The types of the tuned parameters and their count.

Type of Parameters Count
Blocks 6
Threads 23
Strides 3
Total 32

files populated with different parameters from the search space. It systematically varies pa-
rameters like thread block dimensions and kernel optimisation flags based on the search al-
gorithm’s guidance.

The runner module executes CMSSW using the generated configurations and measures
the resulting performance. To obtain statistically significant results, we utilize a wrapper
script around CMSSW that performs multiple benchmark repetitions per configuration [7].
The wrapper discards the first few repetitions to account for caching effects before reporting
the average throughput across the remaining repetitions.

The optimiser navigates the complex search space to maximize CMSSW throughput
using the performance data collected by the runner. It employs an AUCBandit algorithm
introduced by the authors of OpenTuner [4]. This algorithm uses multiple search heuristics
such as evolutionary algorithms, and monitor their performance. After a number of trials, the
algorithm prefers the search heuristics that produces the best performing parameters.

Finally, the results manager stores and retrieves all benchmarking data in a database to
inform the optimiser. It also tracks the tuning progress to support analysis of the optimisation
trajectories taken by the autotuner. The modular design and integration of these components
enables efficient autotuning of the CMSSW reconstruction pipelines.

3.2 Search Space

Defining an appropriate search space by identifying the impactful, independent parameters
is crucial for effective autotuning. The key parameters we tune include CUDA kernel launch
configuration parameters like the number of thread blocks, threads per block, and strides. The
number of thread blocks can depend on data size and threads per block, but we focused on
six independent block dimensions that can be freely tuned. The threads per block parameter
is the most common and is not dependent on other factors. Finally, some algorithms allow
the stride parameter to control the data points processed per thread to be tuned freely. Table
1 summarises the parameters space.

3.3 Multi-Fidelity optimisation

To reduce the computational overhead of autotuning, we employ a multi-fidelity optimisa-
tion strategy. Instead of tuning the full CMSSW reconstruction directly, we first utilize
a minimal GPU tracking implementation called pixeltrack-standalone [8] as a low-fidelity
proxy. Pixeltrack-Standalone provides faster feedback during tuning since it only has sim-
plified CMSSW framework logic, but it includes the full GPU kernels. We tune pixeltrack-
standalone extensively to find high-performing configurations. These top configurations iden-
tified by the low-fidelity framework are then evaluated in CMSSW as the high-fidelity appli-
cation. This approach allows us to avoid exhaustively tuning CMSSW end-to-end. As shown
in Figure 2, the multi-fidelity methodology with pixeltrack as the low-fidelity model provides
significant time savings over naively tuning CMSSW directly. The multi-fidelity optimisation
enabled efficient search in the vast parameter space.



  
Machine 1

(NVIDIA A30X)
Machine 1

(NVIDIA A10)
Machine 2

(NVIDIA T4)
Machine 3

(NVIDIA L4)

100

200

300

400

500

600
700
800
900

1000

2000

Ex
pe

rim
en

ts
 / 

H
ou

r (
Lo

g 
Sc

al
e)

Autotuning CMSSW
Multi-Fidelity Autotuning

Figure 2. The plot shows the difference in time between directly autotuning CMSSW and Multi-Fidelity
Autotuning

Table 2. The configurations used during autotuning and benchmarking the CMSSW.

Machine ID 1 2 3
CMSSW Release 13_0_0 13_0_0 13_0_0
Number of Jobs 1 4 4
Number of CPU Threads 12 32 32
Number of CMSSW Streams 12 24 24
Number of Events 10000 10000 10000

3.4 Benchmarking Methodology and Experimental Setup

For benchmarking, we performed a total of 8 autotuning runs, with 2 runs of 6 hours duration
per GPU. This included one run using direct CMSSW autotuning and another run using the
multi-fidelity approach per GPU. After each run, the top performing configurations suggested
by the autotuner were then benchmarked independently. Each configuration was executed 10
times, with the first 3 results discarded to account for caching effects. The throughput was
averaged over the remaining 7 benchmark repetitions to obtain statistically significant per-
formance measurements. This rigorous benchmarking methodology ensured we accurately
quantified the improvements obtained from the best autotuned configurations on each GPU.
Table 2 summarises our experimental setup, and table 3 shows part of the specifications of
the used GPUs.



Table 3. The specifications of the GPUs used in this experiment.

GPU T4 A30X A10 L4
Streaming Multiprocessor Count 40 56 72 60
L1 Cache / SM 64KB 192KB 128KB 128KB
L2 Cache 4MB 24MB 6MB 48MB
DRAM 16GB 24GB 24GB 24GB

  

NVIDIA T4
4 Jobs

32 Threads
24 Streams

NVIDIA A30X
1 Job

12 Threads
12 Streams

NVIDIA A10
1 Job

12 Threads
12 Streams

NVIDIA L4
4 Jobs

32 Threads
24 Streams

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ev
en

ts
 / 

s

Baseline
Autotuning CMSSW
Multi-Fidelity Autotuning

Figure 3. A comparison between the throughput of the baseline parameters, the parameters found
after autotuning CMSSW directly, and the parameters found from autotuning the pixeltrack-standalone
program.

4 Results and Discussion

Figure 3 shows that the proposed autotuning framework improved the throughput of CMSSW
GPU tracking compared to the default parameters. The increase in performance was about
4%, 6%, 2%, and 7% on the T4, A30X, A10, and L4 respectively. In the A10 case, multi-
fidelity tuning yielded the best parameters, while direct CMSSW tuning was more effective
for the A30X and L4 cases. In the T4 case, both methods produced almost equivalent results.
However, multi-fidelity tuning can evaluate many more configurations in the same time frame
(refer to Figure 2), making it a versatile tool for initial broad parameter exploration.

A promising approach could be a hybrid method, starting with low-fidelity tuning to
explore promising parameter regions, then switching to direct CMSSW tuning for precise
measurement and exploitation. This method combines the strengths of both approaches, po-
tentially enhancing tuning efficiency and effectiveness.

Analysing the best parameter configurations found by autotuning (Figure 4) reveals sig-
nificant variation across the GPUs. Each GPU has different optimal thread block dimensions,



  

fishbone
threads

fishbone
stride

kernel_find_ntuplets
threads

kernel_BLFit
threads

findClus
threads

clusterChargeCut
threads

getHits
threads

Parametrs

0

100

200

300

400

500

Va
lu

es

128

16

64 64

384 384

128

512

16

64 64

192

32

96

160

2
32

64

160

96

64

96

16
32

128

256

448

160

128

16

96

64

384

416

128

Baseline
Best on T4
Best on L4
Best on A10
Best on A30x

Figure 4. The best parameters found for each GPU.

threads per block, and other kernel launch parameters. This highlights the importance of
autotuning, as the best configurations are hardware dependent.

To better understand the performance implications of autotuning, we profiled both the
baseline and tuned configurations across all the GPUs. We noticed that kernels requiring a
large number of registers tend to increase queuing time for other kernels before execution.
This is possibly due to the limited number of registers available per block, suggesting that
assigning fewer threads to such kernels could help reduce these execution delays. That is
why in Figure 4, all the GPUs benefited from reducing the number of threads in the findClus
kernel except the A30X which has the largest L1 cache (refer to Table 3).

However, it is important to note that not all kernels are heavily dependent on registers.
Some kernels require fewer registers and, as a result, do not show the same queuing effect.
This highlights the inherent complexity in finding the optimal configurations, as these are not
always obvious due to the hardware-specific differences. Therefore, the value of autotuning
becomes evident, as it allows for empirical determination of the best launch parameters for
each kernel on every GPU architecture. Autotuning aids in optimising the complex balance
between all the variables to enhance the overall performance.

5 Conclusion

In this work, we developed an autotuning framework for optimising CMSSW GPU tracking
performance by automatically finding improved kernel launch parameters compared to the
defaults. The multi-fidelity optimisation strategy used attempts to navigate the complex con-
figuration space to increase throughput. This initial investigation of autotuning for CMSSW
shows its potential to help exploit diverse accelerator hardware. The techniques may be ap-
plicable to other HEP codebases. While more extensive benchmarking is required, this work
represents early progress in enabling automated optimisation to increase the productivity of
GPU-accelerated reconstruction. With further development, autotuning could provide a use-
ful approach to help harness accelerated systems for HEP computing needs.



Acknowledgments

The experiments presented in this paper were carried out using the facilities of the Benefit
Advanced AI and Computing Lab at the University of Bahrain (see https://ailab.uob.edu.bh)
with support from Benefit Bahrain Company (see https://benefit.bh)

References

[1] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Sil-
vano. ACM Computing Surveys 51, 1–42 (2019).

[2] Ben van Werkhoven, Future Generation Computer Systems, 90, 347-358 (2019)
[3] Andrea Bocci, David Dagenhart, Vincenzo Innocente, Christopher Jones, Matti Korte-

lainen, Felice Pantaleo, Marco Rovere EPJ Web Conf. 245 05009 (2020)
[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey

Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation (PACT). 303–316 (2014)

[5] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan
Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. The Journal of
Machine Learning 23, 2475–2483 (2022)

[6] CMSSW Autotuning Framework https://github.com/asubah/cmssw-autotuning/
[7] Patatrack Benchmarking Scripts https://github.com/cms-patatrack/patatrack-scripts
[8] Pixeltrack-Standalone https://github.com/asubah/pixeltrack-standalone/tree/autotuning


