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Abstract. Next generation High-Energy Physics (HEP) experiments are pre-
sented with significant computational challenges, both in terms of data volume
and processing power. Using compute accelerators, such as GPUs, is one of the
promising ways to provide the necessary computational power to meet the chal-
lenge. The current programming models for compute accelerators often involve
using architecture-specific programming languages promoted by the hardware
vendors and hence limit the set of platforms that the code can run on. De-
veloping software with platform restrictions is especially unfeasible for HEP
communities as it takes significant effort to convert typical HEP algorithms into
ones that are efficient for compute accelerators. Multiple performance porta-
bility solutions have recently emerged and provide an alternative path for us-
ing compute accelerators, which allow the code to be executed on hardware
from different vendors. We apply several portability solutions, such as Kokkos,
SYCL, C++17 std::execution::par, Alpaka, and OpenMP/OpenACC, on two
mini-apps extracted from the mkFit project: p2z and p2r. These apps include
basic kernels for a Kalman filter track fit, such as propagation and update of
track parameters, for detectors at a fixed z or fixed r position, respectively. The
two mini-apps explore different memory layout formats.
We report on the development experience with different portability solutions,
as well as their performance on GPUs and many-core CPUs, measured as
the throughput of the kernels from different GPU and CPU vendors such as
NVIDIA, AMD and Intel.

1 Introduction

Heterogeneous computing is one of the key components to meet the computing challenge of
next generation of HEP experiments, such as the HL-LHC upgrade. Adopting heterogeneous
computing into the current HEP computing model is not a trivial task, given the complex
characteristics of HEP computing, both in terms of hardware infrastructure and the nature of
the software. Typical large-scale HEP experiments have hundreds of computing sites with
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non-uniform resources; the core software programs have around a million lines of C++ code
with no hot-spots, consuming polymorphic custom data objects and are developed by hun-
dreds of domain experts. These difficult conditions imply that if heterogeneous computing
were to be used in HEP, a portability layer that supports multiple accelerator platforms with
minimal changes to the code base would be highly desirable. Not only would portable solu-
tions allow access to more flavors of computing resources, it would also greatly reduce the
burden of maintaining separate code bases for different accelerator backends.

Given the high demand for GPU resources and a more diverse GPU hardware vendor
landscape, portable parallelization solutions are being actively developed. Figure 1 summa-
rizes the hardware supports for several portability solutions considered in this study. Many of
the solutions are rapidly changing in the timescales of a month. Several different approaches
are being attempted among these solutions, including using compiler pragmas (OpenM-
P/OpenACC), C++ libraries (Alpaka [1], Kokkos [2, 3]) and language extension (SYCL,
std::execution::par). Each approach inherits certain advantages and disadvantages, which
may have very different implications if a HEP experiment wants to adopt it. In this work, we
will examine the performance of Kokkos, SYCL, Alpaka, std::execution::par, and OpenM-
P/OpenACC on different GPU backends, using an example test-bed application in the HEP
context.

Figure 1. Summary of hardware supports for different portability solutions, as of May 2023. Green
indicates officially supported, red indicates unsupported, while light green indicates solutions which are
under development.

2 The p2r and p2z program

Reconstructing the tracks of charged particles is one of the most computationally intensive
tasks in collider experiments such as ATLAS [4] and CMS [5] at the LHC, which makes
it the prime target for parallelization investigations. We developed two standalone mini-
applications, called propagation-to-r (p2r) [6] and propagation-to-z (p2z) [7], which perform
the core math of parallelized track reconstructions. The kernels of p2r (p2z) aims at build-
ing charged particle tracks in the radial (beamline) direction under a magnetic field using
detector hits. The kernels involve propagating the track states and performing Kalman up-
dates [8] after the propagation, which are different matrix operations for the propagation in
the r/z direction. The kernels are implemented based on a more realistic application, called



mkFit [9], which performs vectorized CPU track fitting and is used to reconstruct the major-
ity of CMS track. p2r and p2z together form the backbone of track fitting kernels used in
collider experiments.

Both mini-applications use a simplified program workflow, which processes a fixed num-
ber of events (nevts) with the same number of tracks in each event (ntrks). A fixed set of
input track parameters is smeared randomly and then used for every track. All track compu-
tations are implemented in a single GPU kernel. The input data are structured as an array-of-
structure-of-array (AOSOA). The total number of tracks to process equals to ntrks×nevts,
in which the tracks in each event are grouped into batches of size bsize. The structure of
array (SOA) structure that contains a batch of tracks is called MPTRK. Figure 2 shows the
data structure used in the p2r and p2z program.

Figure 2. Illustration of the data structure used in the p2r and p2z program. Track is the basic unit of
work and are grouped into a structure of array (SOA), called MPTRK. The full input data is structured
with an array of MPTRKs, forming an array-of-structure-of-array (AOSOA).

3 Overview of portability layers

We explore portability solutions that use three different approaches: template libraries, lan-
guage extensions and compiler pragmas. In this section, we will give a brief overview of the
portability layers in each approach that we have studied.

3.1 Template libraries

Alpaka [1] and Kokkos [2, 3] are portability solutions that use C++ templates to achieve
portability. One of the major differences between the two libraries is the abstraction level.
While Alpaka has a more similar level as CUDA, Kokkos aims to be more descriptive of
the parallelization algorithm. With a more descriptive model, users are asked to express the
algorithm in general parallel programming concepts, which are then mapped to hardware by
the Kokkos framework. For example, listing 1 shows the code snippets of p2r that uses
parallel_for as the computing pattern and TeamThreadRange as the execution policy of
the kernel. Listing 2 shows the analogous snippet of code written in Alpaka, illustrating the
different templating and kernel launching APIs of the two libraries.

1 //kernel for 1 track
2 template <int bSize, int layers, typename member_type >
3 KOKOS_FUNCTION void launch_p2r_kernel(const member_type& teamMember){
4 Kokkos::parallel_for(Kokkos::TeamThreadRange(teamMember ,
5 teamMember.team_size()),[&] (const int& i_local)(



6 int i= teamMember.league_rank() * teamMember.team_size() + i_local;
7 for (int layer = 0; layer < layers ; ++layer) {
8 propagateToR <N>(...);
9 KalmanUpdate <N>(...);

10 }
11 });
12 return;
13 }
14 //kernel for all tracks
15 Kokkos::parallel_for("Kernel",
16 team_policy(team_policy_range , team_size , vector_size),
17 KOKKOS_LAMBDA(const member_type & teamMember)(
18 launch_p2r_kernel <bsize,nlayer >(); // kernel for 1 track
19 )
20 );

Listing 1. "Snippets of p2r kernels written in Kokkos. Full code is available at [6]."

1 //template for kernel
2 struct GPUsequenceKernel
3 {
4 public:
5 template <typename TAcc>
6 ALPAKA_FN_ACC auto operator()(
7 TAcc const& acc,
8 MPTRK* btracks_,
9 MPHIT* bhits_,

10 MPTRK* obtracks_
11 ) const -> void
12 {
13 using Dim = alpaka::Dim<TAcc>;
14 using Idx = alpaka::Idx<TAcc>;
15 using Vec = alpaka::Vec<Dim,Idx>;
16

17 for (int layer = 0; layer < nlayer; ++layer){
18 propagateToR <N>(...);
19 KalmanUpdate <N>(...);
20 }
21 }
22 };
23 //launch kernel
24 alpaka::enqueue(queue, taskKernel);
25 alpaka::wait(queue);

Listing 2. "Snippets of p2r kernels written in Alpaka. Full code is available at [6]."

3.2 Language extensions

SYCL [10] is a specification of single-source C++ programming model for heterogeneous
computing, which provides native support for Intel’s hardware. Alpaka and Kokkos are both
supporting Intel GPUs through a SYCL backend.

C++ standards have introduced parallel algorithms since C++17 [11], but have limited
features included. Some of the more prominent missing features include asynchronous oper-
ations, launch parameters and explicit memory management. Listing 3 and 4 show the kernel
launch snippets of p2r written in SYCL and std::par, which illustrates the similarity between
the two approaches.

1 //define kernel
2 auto p2r_kernels = [=, btracksPtr = trcks.data(),
3 outtracksPtr = outtrcks.data(),



4 bhitsPtr = hits.data()] (sycl::id<1> i){
5 propagateToR <N>(...);
6 KalmanUpdate <N>(...);
7 };
8

9 //launch kernel
10 cq.submit([&](sycl::handler &h){
11 h.parallel_for(sycl::nd_range(global_range ,local_range), p2r_kernels);
12 });

Listing 3. "Snippets of p2r kernels written in SYCL. Full code is available at [6]."

1 //define kernel
2 auto p2r_kernels = [=, btracksPtr = trcks.data(),
3 outtracksPtr = outtrcks.data(),
4 bhitsPtr = hits.data()] (const auto i){
5 propagateToR <N>(...);
6 KalmanUpdate <N>(...);
7 };
8

9 //launch kernel
10 std::for_each(policy,
11 impl::counting_iterator(0),
12 impl::counting_iterator(outer_loop_range),
13 p2r_kernels);

Listing 4. "Snippets of p2r kernels written in std::execution::par. Full code is available at [6]."

3.3 Compiler pragmas

A more direct approach to the portability is to introduce compiler directives to the loop struc-
tures, which can be used by compilers to convert into parallel executions and offload to ac-
celerators. Two examples adopting this approach are OpenMP [12] and OpenACC [13].

The directives are relatively easy to write for simple kernels to offload, but as seen in the
example code snippets in Listing 5 and 6, these can get complicated as algorithms grow more
complex, especially to handle complex data sharing and mapping.

1 #pragma omp target update to(trk[], hit[])\
2 nowait depend(out:trk[])
3

4 #pragma omp target teams distribute parallel\
5 for num_teams(...) num_threads(...) collapse(2)\
6 map(to: trk[...], hit[], outtrk[])\
7 nowait depend(in:trk[]) depend(out:outtrk[])
8

9 for (size_t ib=0;ib< nb;++ib){ // loop over blocks
10 for (size_t tIdx=0; tIdx< bsize; ++tIdx) { // loop over threads
11 ...
12 #pragma unroll
13 for (size_t layer=0; layer<nlayer ; ++layer){
14 propagatetor(...);
15 kalmanupdate(...);
16 }
17 }
18 }

Listing 5. "Snippets of p2r kernels written in OpenMP. Full code is available at [6]."

1 #pragma acc parallel loop gang worker collapse(2)\
2 default(present) num_workers(NUM_WORKERS) \



3 private(errorProp , temp, rotT00, rotT01)
4 for (size_t ie=0;ie< nevts;++ie){ // loop over events
5 for (size_t ib=0;ib< nb;++ib){ // loop over tracks
6 const MPTRK* btracks = bTk(trk,ie,ib);
7 MPTRK* obtracks = bTk(outtrk,ie,ib);
8 for (size_t layer=0; layer<nlayer ; ++layer){
9 const MPHIT* bhits = bHit(hit, ie, ib, layer);

10 propagateToR(...);
11 KalmanUpdate(...);
12 }
13 }
14 }

Listing 6. "Snippets of p2r kernels written in OpenACC. Full code is available at [6]."

4 Measurements and results

Performance of different portability layers are compared on the supported hardware plat-
forms. The measurements of p2r were performed on the computing nodes in the Joint
Laboratory for System Evaluation (JLSE) hosted at the Argonne National Laboratory, while
p2zmeasurements were performed on the Summit system at Oak Ridge National Laboratory.

Different implementations of the programs were compiled to execute on different hard-
ware platforms, using the same operation parameters. Each kernel corresponds to the compu-
tation of 4 million tracks. The metric for comparison is the overall track processing through-
put of the kernel, which is defined as the number of processed tracks divided by the duration
of the program. Time required for data transfer between the host and device is excluded in the
p2r measurements and are included in the p2z measurements. Since the typical kernel time
is around 1/3 of the data movement, the variation of p2z measurements are less sensitive to
change of kernel runtime, but are sensitive to overheads related to data movements. Figure 3
illustrates a typical GPU timeline of the p2r and p2z program.

Before each measurement, two warm-up runs are executed to reach a more stable hard-
ware condition for computation. The average of 10 measurements, and the corresponding
standard deviations, is reported for each technology. The throughput obtained from portabil-
ity technologies are compared as a fraction of the throughput reached by the platform-native
implementation.

Figure 3. Illustration of a typical GPU timeline for p2r and p2z using a single CUDA stream. The
data movement time is excluded from the throughput calculation in p2r measurements, but is included
in p2z measurements.



4.1 NVIDIA GPU results

Figure 4 shows the measurement of p2r on an A-100 GPUs and measurement of p2z on
V-100 GPUs for various backends. In p2r, while Alpaka and Kokkos both managed to pro-
duced close-to-native performance, the SYCL and std::par versions show significant slow-
downs with respect to the native CUDA implementation. The exact cause of the slow-down
is not clear yet, but preliminary profiling result shows the SYCL version of p2r involves sig-
nificantly more instructions and branching than the CUDA version. In p2z, the slow-down
of the std::par version is mainly because of the longer memory transfer times, which uses a
built-in copy API (std::copy()).
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Figure 4. Throughput measurement of the p2r (left) and p2z (right) programs, implemented with dif-
ferent portability layers, on NVIDIA A-100 GPU and V-100 GPU respectively. Note that data transfer
time is included in the measurements of the p2z results.

With the p2z program, we also explored various effects that could affect the performance
of the portability layers. These include the choice of compilers (for pragma-based portabil-
ity solutions), and memory pinning. Figure 5 shows the p2z performance when compiled
with different compilers for the OpenMP and OpenACC versions (left figure); and the ef-
fect of host memory pinning before data transfer (right figure). Figure 5-left shows that
OpenARC [14]-compiled OpenMP performs better than LLVM-compiled and IBM-compiled
OpenMP versions. The detailed profiling shows that both LLVM and IBM compiled versions
use thread configurations (the number of threads in a thread block and the number of thread
blocks) different from those specified in the OpenMP program, while OpenARC-compiled
version literally follows the user-specified configuration. Different thread configurations in
LLVM/IBM compiled versions adversely affected the concurrency. The OpenMP version of
p2z allocates temporary user data in the team-private memory; OpenARC-compiled ver-
sion allocates the team-private data in the CUDA shared memory, but LLVM/IBM compiled
versions partially use the CUDA shared memory, which incurs more device global memory
accesses than OpenARC-generated version. The lower concurrency and more global mem-
ory accesses seem to be the main reason for the lower performance of LLVM/IBM compiled
OpenMP versions.

In the OpenACC version of p2z, both NVHPC and OpenARC compiled versions achieve
similar kernel computation times, but OpenARC-compiled version had better memory trans-
fer performance than NVHPC-compiled version. OpenARC literally translates the OpenACC
data clauses into corresponding memory transfer APIs (one transfer API call per list item
in a memory transfer data clause), but the NVHPC compiler automatically splits memory
transfers into multiple, small asynchronous memory transfer calls, which may expose more



communication and computation overlapping opportunity, but in the p2z benchmark, too
many small asynchronous memory transfers in the NVHPC version perform worse than the
simple memory transfers implemented in OpenARC, which is the main reason for the better
performance of the OpenARC version.

Figure 5-right shows the performance impact of the host memory prepinning. In the sys-
tem with NVIDIA GPUs, prepinning the host memory enables DMA transfers, which achieve
better memory transfer bandwidth than non-DMA transfers. In the figure, the performance
improvement by the host memory prepinning is more pronounced in the Kokkos version,
which is because the internal implementation of the Kokkos library requires additional mem-
ory transfers, such as copying the functor objects, than OpenACC/OpenMP versions.
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Figure 5. Throughput measurement of the p2z program when compiled with different compilers (left)
and with/without host memory pinning before data-transfer (right) on an NVIDIA V-100 GPU.

4.2 AMD and Intel GPU results

Portability technologies are expanding support towards AMD and Intel GPUs, hence the tool
chains are generally less mature and stable. We note, however, that switching backends for
Alpaka and Kokkos are relatively seamless, demonstrating the advantage of library portability
solutions. Figure 6 shows the performance of various p2r implementations on AMD Mi-100
GPU and Intel A770 GPU. Both Alpaka and Kokkos again have reasonable performance on
AMD GPUs. Measurement on Intel GPUs are biased by the fact that double-precision em-
ulation are required because the A770 GPU does not support double-precision computation.
Nevertheless, we were able to compile and run the SYCL backend for 3 different technolo-
gies.

4.3 CPU results

Having a performant multi-core CPU backend is very advantageous because CPUs are still
the primary computation resources used by HEP experiments. We tested the CPU backends
of different implementations of p2r and p2z program and compared the performance with
respect to the native CPU implementation using TBB. Figure 7 shows portability layers can
achieve around 50-80% of the native performance.
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Figure 6. Throughput measurement of the p2r program, implemented with different portability layers,
on AMD Mi-100 GPU (left) and Intel A-770 GPU (right) respectively.
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5 Conclusion

We have explored major portability solutions suitable for HEP experiments with track recon-
struction mini-applications. The tested portability solutions include Alpaka, Kokkos, SYCL,
std::par and OpenMP/OpenACC. Our results show most solutions can give reasonable per-
formance on NVIDIA GPUs, while support for AMD/Intel GPUs are less mature at the time
of writing.
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