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Abstract. With the emergence of the research field of Quantum Machine Learn-
ing, interest in finding advantageous real-world applications is growing as well.
However, challenges concerning the number of available qubits on Noisy Inter-
mediate Scale Quantum (NISQ) devices and accuracy losses due to hardware
imperfections still remain and limit the applicability of such approaches in
real-world scenarios. Therefore, for simplification, most studies assume nearly
noise-free conditions as they are expected with logical, i.e. error-corrected,
qubits instead of real qubits provided by hardware. However, the number of logi-
cal qubits is expected to scale slowly as they require a high number of real qubits
for error correction. This is our motivation to deal with noise as an unavoidable,
non-negligible problem on NISQ devices. As an application, we use the example
of particle decay tree reconstruction as a highly complex combinatoric problem
in High Energy Physics. We investigate methods to reduce the noise impact of
such devices and propose a hybrid architecture that extends a classical graph
neural network by a parameterized quantum circuit. While we have shown that
such a hybrid architecture enables a reduction of the amount of trainable param-
eters compared to the fully classical case, we are now specifically interested
in the actual performance in more realistic, i.e. noise prone scenarios. Using
simple synthetic Decay Trees, we train the network in classical simulations to
allow for efficient optimization of the parameters. The trained parameters are
validated in noisy simulations based on devices by "IBM Quantum" and are
used in interpretability and significance studies, enabling improvements in the
accuracy on real devices.

1 Introduction

In recent years, there is a growing interest in the field of Quantum Machine Learning (QML)
with application in High Energy Physics (HEP) [1–4]. As the size of publicly available
quantum computers presumably will grow within the next few years [5], noise will remain
a non-negotiable part without proper error correction. The large computational space that is
accessible by even small quantum circuits, motivates application of QML in HEP [1]. The
Full Event Interpretation (FEI) [6] as a highly non-trivial combinatorical problem is such an
application and usually addressed using Boosted Decision Trees.

The authors in [7] introduced an end-to-end trainable solution based on the encoder of a
Graph Neural Network (GNN) approach as proposed in [8] for predicting particle trajectories.
Based only on the momenta of a set of particles, this architecture is able to reconstruct
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the Lowest Common Ancestor Generation (LCAG) matrix that contains information of the
structural properties of the decay tree. In our previous work, we investigated the benefits of
a hybrid quantum-classical model and added a Quantum Multi Layer Perceptron (QMLP)
layer as a first part of this architecture for preprocessing [9]. We observed that with an equal
number of parameters we are able to achieve better results with this hybrid approach instead
of a purely classical approach.

In this work we evaluate different techniques to improve the performance of the hybrid
quantum GNN whilst reducing the time of individual trainings:

1. A hyperparameter study to fine tune and evaluate the most important hyperparameters
for both the classical and quantum part of the model;

2. Different optimizers for the classical and quantum part of the architecture;

3. Pruning of parameters to reduce the overall training time required for gradient calculation
in the quantum part of the model.

2 Related Work
The authors in [10] introduced entangled dropout, where they randomly removed entanglement
gates during the training process to mimic the behaviour of classical dropout, with the aim of
improving the generalisation ability tested in small-scale experiments. It may have comparable
effects to our proposed pruning of parameters for gradient calculation. However, dropout
generally disables the parameters completely, i.e. during the forward and backward pass
during the training process. In contrast, we keep parameters active during the forward path
and only disable them during the backward pass. Moreover, our approach does not rely
on randomness and rather has the goal to reduce training time instead of improving the
generalization capability.

In the Qiskit framework [11] that we used for the implementation of our approach, a
transpilation process adapts a circuit such that it is executable on quantum hardware. During
this process, it is ensured that all gates are either available or get translated into the available
set of gates. In addition, gates that do not contribute to the algorithm, e.g. rotary gates with a
parameter close to or equal to 0, are removed from the circuit. The general aim of this process
is to reduce the total number of gates and thus the noise introduced.

Optimizing hyperparameters not only causes a lot of overhead, but can also have a huge
impact on the outcome of training. Thus, they are rigorously studied in both classical Machine
Learning (ML) [12] and QML [13]. However, the combination of both fields poses new
challenges for trainability, as the importance of hyperparameters as well as the magnitudes of
their values can differ. This can, for example, affect the performance of the chosen optimizer.
However, to the best of our knowledge, no specific research is known that focuses on analyzing
hyperparameters for hybrid models.

Solutions for hybrid quantum-classical architectures are presented for various use cases
including HEP [2, 14, 15]. These solutions often build upon Parameterizable Quantum
Circuits (PQCs) to allow for training the proposed ansätze by parameter tuning. However,
current research focuses on using a single optimizer for the hybrid models. To the best of our
knowledge, there is no previous work that focuses on having different optimizers for a single
optimization task.

3 Approach
Our approach visualized in Figure 1 extends the previous work in [7] by a preceding QMLP
layer for preprocessing of the data. This quantum part takes the four-momenta of l particles (L
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Figure 1. The QMLP takes an input of b batches of l particles (L in total) each described by its four-
momenta. It is follows the architecture from [7] which is build around the encoder approach in [8]. This
GNN is characterized by N iterations MLPs of size d surrounded by initial and final MLPs.

in total) in form of b batches and processes it and passes the result onto the a series of initial
Multi Layer Perceptrons (MLPs) followed by a GNN of N iterations. A final set of MLPs then
returns the LCAG matrix which describes the structural properties of the decay graph. Details
on the exact approach can be found in [9].

This work focuses on the trainability and explores techniques such as different optimizers
for quantum- and classical parts as well as parameter pruning to reduce overall training time.
Furthermore we conduct hyperparameter optimization using Optuna to reveal insights on the
importance of certain hyperparameters for the overall training performance.

3.1 Hyperparameter Optimization

Generally, hyperparameters are any non-trainable parameters of an architecture and its training
process that have to be adjusted prior to the actual training. However, their configuration
can have a significant impact on the training performance. Besides tuning hyperparameters
manually, more structured methods such as grid-search or Tree-structured Parzen Estimator
(TPE) [16] exist. While grid search ensures that all valid parameter configurations are tested, it
can result in a reasonable overhead as it tests configurations that may be negligible in the first
place. The TPE is an independent sampler that fits a Gaussian Mixture Model (GMM) to the
hyperparameter configuration that produced the best objective value in each trial. On the one
hand, this approach therefore reduces the overall number of evaluations as likely unfavorable
hyperparameter configurations are not being considered any further. On the other hand it is not
guaranteed that neglected configurations would not yield an even better objective value. As
the LCAG value corresponds to our classes, the physical usability of the model’s prediction
is best reflected by the accuracy metric, which we therefore chose for our single-objective
studies. Other metrics such as the perfect LCAG score would introduce unnecessarily hard
constraints on the prediction as only a fully correct LCAG would improve this score.

3.2 Reducing the number of circuit evaluations

When training a PQC, gradients of the parameters are being calculated using the Parameter-
Shift Rule (PSR) [17, 18]. This however is very costly in terms of training time as two/ four
evaluations per rotational/ controlled rotational gate are required to obtain the gradient value of
its parameter. During training, the gradients of the parameters usually decay when approaching
a (global) optimum. As certain parameters have a less significant impact on the overall loss
value, compared to others, this can happen already in early epochs of the training.

Ideally, if a parameter value remains unchanged for a couple of epochs, one might assume
that it already approached a (globally) optimal value. However, with the output of a PQC
being (at least) subject to statistical noise, the same noise is being reflected on the gradients
and thus their values eventually will not become exactly zero.



In our approach, we therefore track the gradient variance for each parameter over a
specified number of epochs. If the variance falls below a certain threshold, the gradient of a
particular gate is not computed and the parameter value remains unchanged in that particular
update step. As calculating gradients with the PSR is very expensive, this approach can
significantly reduce the number of quantum circuits executed and thus the training time.

It shall be noted that skipping parameter updates due to small gradients is not necessar-
ily bound to low parameter values and the approach therefore differs from optimization in
transpilation processes [11]. If a parameter value approaches zero, the transpiler can remove
this particular gate which would otherwise likely introduce noise while its contribution to the
overall computation can be neglected. As we calculate the gradients using the PSR, at least
one/ three of the two/ four evaluations will result in a parameter value unequal zero. Thus the
transpilation process will not be as effective as disabling the overall gradient calculation.

3.3 Separate Optimizers for Quantum and Classical parts

To further improve the trainability of our approach we consider carrying out separate optimizers
with differently adjustable learning rates for the classical and quantum part of our model.
This approach is mainly motivated by the different sensitivity and behaviour of parameter
adjustments between Classical- and Quantum-Neural Networks (NNs). Different parameters
requiring different learning rates is not a new concept in ML and optimizers such as Adam
address this by introducing individual step sizes for each parameter. However, this optimizer is
still sensitive to the initial learning rate. This could cause the optimization process to diverge
when being setting the learning rate too high, or to slow down convergence rate when setting
it too low.

4 Experiment Results

Using Optuna [21], we gave the TPE a set of hyperparameters and respective ranges as
can be seen in Table 1. Amongst common parameters such as batch size, learning rate and
NN specific parameters (number of blocks and -(additional/ final) MLPs) we also evaluated
different quantum circuit templates introduced in [20], data reuploading [19] and number of
shots (i.e. number of measurements). Each study consists of 20 trials where multiple studies
run concurrently. By using seeds, we guarantee that two independently run trials with the
same hyperparameter configuration would yield the same objective value. The results are
stored in a common database which, together with the reproducibility of our training, allows
further estimation of a TPE using the results of other trials. We will refer to this set of trials
as a single hyperparameter study. To reduce the time taken by each trial, we use a median
pruner with 10 initial trials and 5 warm-up epochs each. This means that the pruner waits 5
epochs and then checks in each epoch whether the currently running trial should be pruned
(i.e. cancelled) based on the current accuracy compared to the median of other trials.

From the results of this study we observed that in the best trial the hyperparameter
optimizer selected Adam for both the quantum and classical part of the model but chose an
order of magnitude higher learning rate for the quantum part. This effect is not only observed
in case of the best trial but stays consistent amongst the trials with the best objective value.
An importance analysis of the hyperparameter study, which visualises the importance of the
hyperparameters on the change in the objective value of a trial, highlighted the batch size and
learning rate (of both quantum and classical optimizers) as having a strong influence on the
objective value of the optimization process. The hyperparameters of the best trial among these
studies are used in following experiments. All simulations include the noise model of the IBM
Quantum device ibm_perth.



Table 1. Hyperparameters considered in the hyperparameter study with their according range of values.
The gradient curvature history and threshold are additional hyperparameters that we introduce to

minimize the amount of required gradient calculations. The batch size, feedforward dimension and
number of blocks are variables as used in the architecture described by Figure 1. The parameter

configuration that is related to the trial with the highest accuracy is stated in the rightmost column.

Hyperparameter Range Optimal Value
Batch size (b) {4, 8, 16, 32} 32
Data Reuploading [19] enabled True, False True
Dropout rate {0.05 ∗ k | k ∈ {1, . . . , 10}} 0.1
Gradient Curvature history {0, 4, 8} 4
Gradient Curvature threshold {1ek | k ∈ {−12, . . . ,−9}} 1e−11

Feedforward dimension in MLPs (d) {16, 32, 64} 64
Number of blocks (N) {1, 2, 3} 3
Number of MLPs within a block {1, 2, 3, 4} 2
Number of additional MLPs {1, 2, 3, 4} 2
Number of final MLPs {1, 2, 3, 4} 2
Predefined PQC "Circuit [16-19]" [20] "Circuit 19"
Number of PQC layers {1, 2, 3} 2
Number of shots {64, 256, 1024} 1024
Learning rate of classical optimizer 4ek | k ∈ {−4, . . . ,−1}} 4e−3

Learning rate decay of classical optimizer {1e−2, 1e−1, 1} 0.1
Learning rate of quantum optimizer 4ek | k ∈ {−4, . . . ,−1}} 4e−4

Learning rate decay of quantum optimizer {1e−2, 1e−1, 1} 0.5
Type of the quantum optimizer Adam, SGD Adam

Figure 2 on the left shows the absolute gradient values of the individual parameters within
the QMLP over a whole training process of 20 epochs. We use these gradient values to
calculate variances which we use to decide whether to calculate the gradient of a parameter
in subsequent epochs. The parameter indices are counted from left to right and from top to
bottom in the circuit representation. One can see that e.g. parameter 4 does not receive any
updates after epoch 9. Any subsequent calculation of its gradient can therefore be considered
obsolete and would yield very small gradient values that are negotiable in the presence of noise.
Here, noise refers to both, stochastic fluctuations from measurements as well as derivation
from the theoretical true value due to hardware imperfections.

Our approach introduces two hyperparameters that are required to determine whether the
subsequent gradient calculation of a parameter should be skipped or not:

1. Gradient curvature history which defines the number of epochs that are being taken into
account when calculating the variance of the gradient values. Note that this also sets the
number of epochs at the beginning of a training during which no pruning will happen.

2. Gradient curvature threshold which sets the limit below which subsequent parameter
updates are being disabled.

Note that when gradient calculation is skipped, the parameter still contributes to the overall
calculation which is not the case with the commonly used dropout technique as used in [10].

Figure 2 on the right shows the gradient values with pruning enabled. Here, the threshold
was set to 1e−11 and the curvature was calculated based on 4 epochs. Those values also
originate from the previous hyperparameter study.



Figure 2. Absolute gradient values of the parameters within the QMLP over training epochs. Parameter
indices are counted from left to right and from first to last qubit. The gradients are averaged over the
batch size. The Figure on the left shows training without pruning and reaches an accuracy of 80.9%
for 7.3h of training. The Figure on the right shows gradients with pruning enabled and reaches an
accuracy of 80.4 for 3.4h of training. Curvature of gradients has been calculated based on 4 epochs with
a threshold of 1e−11.
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Figure 3. The number of selected parameters for gradient evaluation is visualized on the left. The
Figure on the right shows the overall performance, both on training and validation data, of the hybrid
architecture for various metrics. Besides the accuracy and loss we also evaluated the perfect LCAG score
that was introduced in [7]. The peak performance is achieved in epoch 11.

In Figure 3 on the left we show the number of actually selected parameters of which
the gradient is calculated in the backpropagation path. Note that after initially dropping the
number of selected parameters in epoch 4, the number of parameters can increase if setting the
gradient value to zero (which happens if a parameter is deselected) would cause the variance
of its gradient to increase above the preset threshold. The reduced set of parameters reduced
the training by 54% while the accuracy decreased only by 0.5%.

The overall training performance is shown in Figure 3 on the right where losses, accuracy
and perfect LCAG score of both training and validation are visualized. Perfect LCAG here
describes an exact match of the ground truth and the predicted LCAG.



5 Discussion & Conclusion

Based on the proposed methods, the results of this paper hint further interesting research
directions such as 1. Separate optimizers for quantum and classical parts in hybrid NN
2. Pruning of parameters/ gates updates that become irrelevant during the training process due
to vanishing gradients However, the significance of these approaches should be investigated
in dedicated experiments with a reduced set of variables. Especially in case of separate
optimizers, the capability of the classical NN is too high in the given architecture to allow
for final conclusions regarding this approach. This goes along with the impact of the QMLP
to the overall capability of the model. In its current setup it is hard to measure and might be
relatively small. Therefore, changes in the architecture should be made in further work on the
task of FEI.

Skipping the gradient updates for certain parameters turned out to be a very effective
approach as it significantly reduced the overall training time. The effect vanishing gradients
due to the Barren Plateau [22] effect is unlikely as the size of our circuit (4 qubits, 2 PQC
layers) does not fall into the scale discussed in the mentioned paper. However, more advanced
pruning techniques and small scale experiments should be made to validate this approach. It
should also be compared with a purely random dropout applied on the gradient calculation
to see if the decision based on the gradients variance is actually beneficial. Another feasible
addition might be the random activation of previously deactivated parameter updates which
would correspond to an inverse dropout.

By using these approaches we are not only able to reduce the training time significantly by
54% with negligible decrease in accuracy but also improve on the results of our previous work
in regards of the noise prone simulations.
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