
Measurements With A Quantum Vision Transformer:
A Naive Approach

Dominic Pasquali1,2, Michele Grossi2, and Sofia Vallecorsa2

1Physics Department, University of California Santa Cruz, Santa Cruz, CA 95064
2CERN, 1211 Geneva 23, Switzerland

Abstract. In mainstream machine learning, transformers are gaining
widespread usage. As Vision Transformers rise in popularity in computer vi-
sion, they now aim to tackle a wide variety of machine learning applications. In
particular, transformers for High Energy Physics (HEP) experiments continue
to be investigated for tasks including jet tagging, particle reconstruction, and
pile-up mitigation.
An improved Quantum Vision Transformer (QViT) with a quantum-enhanced
self-attention mechanism is introduced and discussed. A shallow circuit is pro-
posed for each component of self-attention to leverage current Noisy Intermedi-
ate Scale Quantum (NISQ) devices. Variations of the hybrid architecture/model
are explored and analyzed.
The results demonstrate a successful proof of concept for the QViT, and es-
tablish a competitive performance benchmark for the proposed design and im-
plementation. The findings also provide strong motivation to experiment with
different architectures, hyperparameters, and datasets, setting the stage for im-
plementation in HEP environments where transformers are increasingly used in
state of the art machine learning solutions.

1 Introduction

Much of the rise in performance and power behind modern day machine learning revolves
around transformers and by extension self-attention. Made famous by the 2017 paper At-
tention Is All You Need [1], transformers and self-attention have revolutionized Natural Lan-
guage Processing as such architectures have formed the bedrock for GPT-3 [2], LLaMa [3],
and others [4–10]. The idea of Vision Transformers was introduced in the 2020 paper An Im-
age is Worth 16x16 Words: Transformers for Image Recognition at Scale [11] which applied
transformers to images. With the onset of Vision Transformers, transformers can be used for
computer vision tasks such as classification [11] and object detection [12].

At a very high level, self-attention takes inputs (in tensor form) and multiplies those inputs
by three separate learned matrices to generate unique "q" (query), "k" (key), and "v" (value)
matrices for each input1. Query and key matrix elements are multiplied together and then
passed to a softmax operation to create the attention matrix, and the attention matrix is then
multiplied by the value matrix elements. All of the resulting outputs are then concatenated

1The terms query, key, and value come from the days of retrieval systems when a search engine would map the
Query (e.g. the text in a search bar) against the Keys (e.g. given descriptors like video title, description, etc...) of
indexed items, and then the search engine would return the best matched items (Values) to the user.



and output together. The query matrix is then shared and used in the same operation with
every input generated key and value matrix that the vision transformer takes in [1]; it is this
sharing of the query matrix between the other separate key and query matrices from which
self-attention gets its power and performance.

As Transformers expand to different variations and applications, such architecture has
inspired and motivated the development of Quantum-enhanced Vision Transformers (QViT).
The QViT replaces classical self-attention with a version of quantum self-attention, and such
QViT design resolves issues with past implementations and whose performance is compared
against a classical ViT.

2 Previous Quantum Self-Attention Architectures

Previous works attempted to implement quantum (self) attention with various levels of per-
formance [5, 13]. However such implementations leave room for improvements which are
outlined below and set the stage for a novel QViT implementation.

Attempts at applying attention to quantum vision transformer networks include [13], how-
ever while such work employs attention it lacks self-attention. Such self-attention is essential
for comparing encoded inputs across multiple other inputs, however [13] makes no mention
of the encoded query, key, or value parts of the input, and does not compute the query and the
key parts of the input together.

Another drawback of previous works for quantum (self) attention in vision transformers is
that they don’t consider the sizes for the inputs of the attention mechanism to be an adjustable
hyperparameter. This hyperparameter allows for the user to tune the projected space that is
input to the (self) attention mechanism, and such tuning can be done on an case-by-case basis
for purposes of biasing an input to have more of an effect than another input. For example it
may be advantageous to give the query vector more influence than the key vector when they
are combined, and likewise it might be more advantageous to give the attention vector more
weight than the value vector. With past approaches such inputs were all treated equally and
gave no room or operation to do so otherwise. Classical vision transformers don’t typically
consider this flexibility either as the projected sizes for their query, key, and value components
are traditionally a function of the input, however given that the self-attention mechanism is
now being dealt in a quantum mechanical manner, it’s worth considering and fine-tuning the
flexibility for the size of the inputs to the quantum mechanical self-attention mechanism.

Also the approach proposed in this work is hardware agnostic as one could tune the inputs
to the quantum circuit to fit the available input size to the applied quantum hardware of
interest. If using a simulated approach this ability to tune the size of the inputs as well as
their proportions allow for effective use of the simulated quantum circuit, since too large
of an input would slow down the simulation while too small of an input would not capture
the full effects of the input in a reduced dimension. In contrast to the above motivation for a
quantum vision transformer, the paper [13] passed the full width of the input to their quantum
circuits without regard to current, future, or available quantum circuitry, real or simulated.

Other work addressing the quantum self-attention in a transformer architecture includes
[5] which more closely resembles a true transformer structure with some interesting features.
[5] divides the inputs into three parts and then entangles the query and key inputs via a CNOT
gate before the self-attention is conducted; combining the query and key inputs constitutes
creating some type of attention between the query and key. However the query, key, and
value matrices should remain separate and independent until after they’ve been combined for
self-attention.

The technique proposed in [5] also indicates that at the end of their quantum circuit the
previous inputs are summed with the product of the proposed attention and value steps. This



incorporation of the input to the output is more reminiscent of a UNet [14] than a transformer
in which such an operation is absent.

[5] indicates that the query and key components of self-attention are coupled together,
and then after measurements are taken for their respective values the query and keys are
subtracted from one another and then put through a softmax (of sorts) of these differences.
This approach creates noise in the output when evaluating the difference of queries being
compared against keys from the same input, thus a difference wouldn’t yield how much self-
attention an input should give to itself since the items being compared are already entangled
from previous operations.

Despite the aforementioned works, the proposed approach resolves the above points with
its own novel implementation for quantum-enhanced self-attention vision transformers.

3 Methodology

The most simple approach to create a novel QViT simultaneously addressing the issues above
while competing with a ViT [11] would be to replace the dot-product attention inside the ViT
with a trained variational quantum circuit.

The following subsections will discuss how Quantum Self-Attention was implemented
within the ViT. Variations and their motivations will be addressed in later sections. Unless
otherwise noted, the QViT has identical default settings and parameters as the classical ViT.
The performance of the QViT will then be benchmarked against its classical ViT counterpart.

3.1 Quantum Self-Attention

This work focused on developing Quantum Self-Attention within the ViT. However since
self-attention within the ViT relies on dot-product attention, the attention is replaced with a
classical-quantum hybrid architecture (Figure 1) which when inserted into the ViT architec-
ture becomes Quantum Self-Attention within the ViT.

To begin, assume that the tensors for the query, key, and value for attention are given with
their encoding masks already applied and the scaling factor is applied to the query and key.

3.2 Creating The Attention Mask

To create the quantum attention mask, the query and key pass through a classical linear layer
to project their respective size down to five nodes. The resulting query and key vectors are
concatenated together to form a single vector which is then passed to a hyperbolic tangent
activation function, whose output is multiplied by a scalar, α. The vector is then passed to the
quantum circuit where it undergoes an Ry rotational encoding step for 10 wires, after which
the quantum circuit applies four iterations of PennyLane’s StronglyEntanglingLayers (with a
single iteration consisting of single generalized qubit rotations on each wire and CNOT gates
connecting pairs of wires across the entire circuit) [15]. The quantum circuit measures the
expectation value of the Pauli Z matrix for each of the wires of the circuit. The resulting
measurements get sent through a softmax layer which generates the attention vector. These
steps can be seen in the top half of Figure 1.

3.3 Generating The Output

Creating the output with the attention mask (vector) and value is nearly the same process as
described in Section 3.2, with the exception that there is no softmax operation.



Figure 1. This figure depicts the flow of information through quantum attention, though the circuit
parameters can be found in Section 3.3. The query and key matrices are flattened into vectors. The
vectors are then concatenated together and are passed through a hyperbolic tangent activation function,
whose outputs are then multiplied by a scalar, α. The inputs enter the quantum circuit and are encoded
via an encoding method, E(xi) (where xi is an input to the quantum circuit. Note that the illustration
stops at x4 for brevity). The above process is repeated for the value matrix whose resulting vector
is concatenated with the attention vector, and the result after the imposed variational quantum circuit
forms the output for Quantum Self-Attention.

To create the output, the attention vector and the value matrix pass through a classical
linear layer to project their respective sizes down to five nodes. Then the attention and value
are concatenated together to form a single vector which is then passed to a hyperbolic tangent
activation function, whose output is multiplied by a scalar, α. The vector is then passed to the
quantum circuit where it undergoes an Ry rotational encoding step for 10 wires, after which
the quantum circuit then applies four layers of PennyLane’s StronglyEntanglingLayers [15].
The quantum circuit then measures the expectation value of the Pauli Z matrix for each of
the wires of the circuit. The resulting measurements form the output of the entire attention
mechanism. The above creation of the aforementioned output can be seen in the bottom half
of Figure 1.

After the output is generated, it passes through a classical linear layer to project back into
the appropriate number of dimensions to continue being passed to the rest of the QViT.

4 Software, Data, Models & Experiment

4.1 Software and Data

The MNIST digits dataset [16] is used as a classification task to compare the performance of
the ViT and proposed QViT.

PyTorch [17] was used to supply the MNIST dataset which was brought in via the EM-
NIST dataset [18] with the MNIST split. The data was then normalized with a mean of 0.1307
and a standard deviation of 0.3081 over the only channel. The training and test datasets were
defined by their respective default files as called by PyTorch.

The ViT was taken from the PyTorch implementation of the Vision Transformer[19].
The defined architecture variables were taken to be the following: image size of 28 × 28



pixels; patch size of seven pixels; one layer; two heads; a latent (hidden) dimension of 128;
multilayer perceptron dimension of 128; one channel; and 10 classes.

ADAM was the chosen optimizer and Cross Entropy was the loss function.
PennyLane [20] was used for simulating and training the quantum circuits. All functions

for encoding data into the quantum circuits and constructing the quantum circuit learned
parameters were done with the PennyLane API.

4.2 Models

Constructing the QViT begins with the ViT. Within the ViT, the dot-product attention is ex-
changed with the Quantum Self-Attention mechanism described in Section 3 and illustrated
in Figure 1. After the output is generated, a linear layer is used to increase the output dimen-
sions to the shape the output would have been if classical self-attention was used instead of
Quantum Self-Attention.
α was chosen with regards to the rotational encoding step, Ry. Consider that since the

classical information passes through a hyperbolic tangent activation function before reaching
α, then all of the information will be projected to span from −1 to 1. Therefore one value
for α was chosen to be α = π2 ; this is an arbitrary choice, with a careful eye for the projected
space of the inputs to be not too big but not too small either, as the projected data will span
from − π2 to π2 when passed to Ry. The other value for α was chosen to be α = π − 0.01 to
ensure that all encoded data remained unique after being passed to the Ry rotational encoding
step and did not overlap at α = ±π.

There is a question of dimensionality when the output of the softmax operation should or
should not match the dimensions of the value vector. In some models (as addressed below)
the attention vector passes through a linear layer to scale up to the equivalent shape of the
value vector, and then both the attention vector and the value vector are scaled down with the
help of a linear layer to five nodes, after which the resulting vectors are concatenated together
and passed to the quantum circuit. In other models the attention vector passes through a linear
layer that scales the vector down to five nodes, and then a separate linear layer scales the value
vector down to five nodes. After this the vectors are concatenated together and passed through
the quantum circuit. The scaling tests to see if the initial projected dimensional space of the
attention and value vectors change the performance when they’re scaled down; this will be
discussed further in Section 5.

From the above, four models are explored with the following titles and parameters:

• QViT With π2 Encoding

– the attention vector is rescaled to the same shape as the value vector with the help of a
classical linear layer, and α = π2

• QViT With π2 Encoding And No Rescaling

– the attention vector is scaled down with the help of a classical linear layer, and α = π2

• QViT With π − 0.01 Encoding

– the attention vector is rescaled to the same shape as the value vector with the help of a
classical linear layer, and α = π − 0.01

• QViT With π − 0.01 Encoding And No Rescaling

– the attention vector is scaled down with the help of a classical linear layer, and α =
π − 0.01



5 Results And Discussion

As seen in Figure 2, when comparing the test and training statistics of the QViT and the
(classical) ViT, it is found that the QViT and classical ViT are of comparable performance.
It can be argued that the QViT gives a slight boost in performance when examining the test
accuracy, however upon closer inspection of the y-axis’ scale it can be immediately rendered
that such differences do not amount to any statistical significance.

A similar result to the above analysis can also be found with the test loss. While the
test loss for the QViT models on average outperform the classical ViT, such differences are
minute when examining their scale via the y-axis.

The training loss tells the above story in perhaps the most stark terms; by inspection the
training loss yields no statistical difference between the classical ViT and the QViT.

What is interesting is that varying α or the projected dimensions for the attention mask do
not change the behavior of the QViT. It may very well be that the imposed quantum circuit
allows for the resulting attention vector to be in a sufficiently separate dimensional space such
that any extra alteration yields no advantage over the ViT or difference between the presented
projected dimensions.

Figure 2. Plots depicting the training loss, test loss, and the test accuracy. Given the scale of the y-axis,
the plots indicate that the proposed QViT is comparable in performance with the classical ViT.



6 Remarks

As inspired by modern day Vision Transformers, this work proposes a Quantum-enhanced
Vision Transformer in which a novel approach to Quantum Self-Attention is introduced and
implemented. The performance of the QViT is benchmarked with the MNIST digits dataset
and whose performance is compared against a classical ViT. Careful steps are taken to ensure
that the encoding of information from classical to quantum maximizes the possible encoding
space while also preventing an overlap in data encoding, as discussed in Section 4.2. Upon
examining the models and their resulting statistics after training and testing on the MNIST
dataset, it is found that a naive and simple implementation of a QViT is of comparable and
competitive performance with the classical ViT.

Future work includes changing the encoding method of classical to quantum information,
as well as varying the quantum circuit architecture. Also changing the ratio of the informa-
tion contributed by the query and key vectors, and the value and attention vectors in their
respective operations may very well alter the resulting performance.
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