
Parallelizing Air Shower Simulation for Background
Characterization in IceCube

Kevin Meagher1,∗ and Jakob van Santen2 for the IceCube Collaboration∗∗

1Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin,
Madison, WI 53706, USA.

2Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany.

Abstract. The IceCube Neutrino Observatory is a cubic kilometer neutrino
telescope located at the Geographic South Pole. For every observed neutrino
event, there are over 106 background events caused by cosmic ray air shower
muons. In order to properly separate signal from background, it is necessary to
produce Monte Carlo simulations of these air showers. Although to-date,
IceCube has produced large quantities of background simulation, these studies
still remain statistics limited. The first stage of simulation requires heavy CPU
usage while the second stage requires heavy GPU usage. Processing both of
these stages on the same node will result in an underutilized GPU but using
different nodes will encounter bandwidth bottlenecks. Furthermore, due to the
power-law energy spectrum of cosmic rays, the memory footprint of the
detector response often exceeded the limit in unpredictable ways. This
proceeding presents new client–server code which parallelizes the first stage
onto multiple CPUs on the same node and then passes it on to the GPU for
photon propagation. This results in GPU utilization of greater than 90% as
well as more predictable memory usage and an overall factor of 20
improvement in speed over previous techniques.

1 Introduction

The IceCube Neutrino Observatory is a cubic kilometer telescope designed to observe neu-
trinos with energies of 100 GeV and above. It was built by assembling 5160 Digital Optical
Modules (DOMs) and placing them in the glacial ice of Antarctica between depths of 1450 m
and 2450 m. Each DOM contains a 25 cm photomultiplier tube (PMT), high voltage power
supply, and digitization and communication electronics. The optical properties of the ice vary
significantly over the range of the detector’s depth. These depth dependent optical properties
make it so that simple models of light propagation in the ice are not accurate. In order to
obtain accurate simulation it is necessary to use Monte Carlo simulation to track individual
photons which is computationally expensive.

The large size of the IceCube detector means that it also observes a high rate of muons
from cosmic ray air showers. For most analyses these muon events are considered undesirable
background. IceCube’s trigger rate is approximately 3 kHz, which is almost all muon events,
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Figure 1. Simplified diagram of the old IceCube simulation chain. The direction and primary energy
are sampled by Corsika before it simulates the air shower. The events are written to disk in Corsika’s
binary format. The files are then read by IceTray [1], IceCube’s processing framework. The muons
from the air shower are then propagated in the ice by Proposal. The light produced by Proposal is then
handed off the GPU to propagate photons. Finally the detector response is simulated. All stages can
only perform work on one event at a time causing inefficiencies in the simulation.

whereas atmospheric neutrinos are only detected at a rate of about 2 mHz; thus, any neutrino
analysis requires a data reduction of at least 6 orders of magnitude. In order to properly
perform an analysis with this level of data reduction, it is necessary to produce a large quantity
of background simulation. In Section 2, we will describe the former state of IceCube’s cosmic
ray simulation and then in Section 3 we describe why this method uses computing resources
inefficiently. In Section 4, we describe a new client–server simulation stack and how it was
designed to address the deficiencies of the old chain. In Section 5, we show that the new
chain shows significant improvement in efficiency while yielding the same science results.
Finally, we discuss further possible improvements in Section 6.

2 Old Simulation Chain

As shown in Figure 1, IceCube’s simulation chain can be broken down into four components:
air shower propagation, muon propagation, photon propagation, and detector simulation.
Each stage is implemented using one or more modules in IceTray [1], IceCube’s framework
for serially processing data and simulation. The air shower simulation starts with a cosmic ray
primary and tracks all secondary particles as they travel through the atmosphere where they
interact with air molecules or decay. This simulation is performed by Corsika 7 [2], a stan-
dard software package used throughout the cosmic ray physics and high-energy astronomy
community. Muons and neutrinos are the only secondary particles that can reach the detector
depth of IceCube. Muons produced in the air shower are then tracked through the ice with
Proposal [3], which was designed for efficiently propagating muons on length scales needed
for deep ice detectors. Proposal tracks muons by dividing their energy losses into continuous
and stochastic losses; the energy threshold between these two losses can be set based on the
specific application: A lower threshold for more accuracy and a higher threshold for faster
compute times. To save computing resources, the threshold is set to a higher energy for track-
ing from the surface to the detector. Once the muon enters the detector volume, the threshold
is lowered to get an accurate account of energy losses. Electromagnetic and hadronic secon-
daries that are generated by muons are tracked by code which uses parameterized light yields
based on Geant4 studies [4].

These losses in the detector volume are then used as light sources for the photon propaga-
tor. The optical properties of the ice are divided into vertical layers of 10 m thickness having
different coefficients of scattering and absorption. Light is propagated by using Monte Carlo



techniques to calculate the distance to the next scatter for each photon and then picking a
new angle based on the physics of scattering. This process is then repeated until the photon
intersects a detector or is absorbed. When a photon intersects a detector, it creates a photo-
electron with a probability calculated from its position, direction, time, and wavelength. This
process is highly computationally intensive but also embarrassingly parallel and thus benefits
significantly from GPUs. IceCube has two photon propagators PPC [5–7] and CLSim [8, 9]
which can be used interchangeably.

The final step is detector simulation, in which photoelectrons registered by the photon
propagator are converted into digital readings by the DOM hardware using parameteriza-
tions of the PMT response and front end electronics [10]. Noise in the PMT and data ac-
quisition [11] are also simulated. After this, simulation is then run through the exact same
reconstructions and filtering algorithms as experimental data.

3 Problems with Old Simulation Chain

The simulation chain described above is effective at producing a simulation that is in agree-
ment with data. However, there are several inefficiencies that significantly slow down pro-
duction. Corsika and Proposal are highly stochastic and are not easily parallelizable, and so
need to be run on CPUs. Running a simulation chain with the GPU based photon propaga-
tion sandwiched between CPU intensive code creates a number of challenges for large scale
production of simulation.

IceCube uses a distributed processing system, called IceProd [12], which routinely runs
jobs with dependency graphs, such that related jobs can run on different nodes in succession.
This makes it possible to run a CPU job and then send the results to a GPU job. This has
worked reasonably well historically, but has several problems in practice:

Since Muon propagation through the ice is highly stochastic, most muons do not reach
the detector volume. This creates an Input/Output bottleneck for low energy primaries as all
the muons produced in the air shower must be saved and transferred from the first stage node
to the second stage which can take up a significant portion of the processing time.

Unfortunately, attempting to run the CPU stage and GPU stage on the same node causes a
different issue. The time needed for CPU calculation exceeds the time for GPU, which means
that the GPU will sit idle for a significant fraction of the time. Another issue that arises is that
in order to properly exploit the parallel nature of the GPU, photons must be sent to the GPU
as a fairly large batch, and many events will have too few light sources to properly utilize the
GPU.

In addition, the chain requires that all the information about an event to be stored in mem-
ory: for high energy events, this can often exceed the available memory, typically 2GB. Jobs
that exceed this limit will be halted by the computing orchestrator and must be resubmitted
with a higher memory limit, resulting in wasted computing resources. Due to the extremely
stochastic nature of air showers and muon propagation and the power-law primary spectrum,
it is very hard to predict which events will exceed the memory limit. This problem will only
get worse as new computing resources come online. Although the amount of memory in new
computing infrastructure continues to rise, the number of CPUs per node is increasing faster
than memory. The net result is that the amount of memory per processor core is expected to
decrease over time. A solution to this issue must be found in order to efficiently utilize future
computing resources.
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Figure 2. The new client–server simulation is shown in a simplified block diagram. Events are
generated by a simple IceTray module. The event is then handled by the propagation client which uses
a work queue to store information from multiple events. Work is handed off as needed to servers which
handle air shower, muon, and photon propagation. After hits are generated they are handed off to the
detector simulation.

4 New Client–Server Simulation Chain

With all these issues in mind, we undertook a significant refactor of our simulation chain.
This involves a new client–server model for air shower, muon, and photon propagation. A
block diagram is shown in Figure 2. The propagation client now holds a queue of all particle
propagation which needs to occur and it connects to a number of servers using interprocess
communications (IPC). The first step of the chain is that the direction, location, and energy
of the cosmic ray primaries are now sampled using a new IceTray module, rather than the
distributions available from Corsika.

Since we do not rely on Corsika to generate primary particles, a new IceTray module
was written. This generator module simply produces primary particles on the surface of a
cylinder slightly larger than the fiducial volume of IceCube.

The heart of the new chain is a new IceTraymodule, referred to as the propagation client,
which stores all the particles to be tracked in a queue. At each step of particle processing it is
sent to the appropriate server based on the type of particle. The server returns the appropriate
daughter particle in addition to any light created by the propagation of that particle. The
daughter particles are added to the queue and the photon emitting steps are stored in a separate
queue. When the step queue is sufficiently full, a block of steps is sent to the propagation
server for processing as a batch. The server aggregates steps from multiple events and clients
in order to keep the GPU as busy as possible.

Since the queue does not need to store all of the intermediate particles at the same time,
there are significant memory savings. We also chose to take the opportunity presented by
refactoring the code to replace the previous data structure used to store hits with a more
efficient one. The old code used a data structure which stored a lot of diagnostic information
such as initial direction and number of scatters experienced. This information is useful for
debugging simulation code but is unnecessary for production. It was replaced with a new
object which only stores the ID of the particle that produced it, the time of the hit, and the
weight. Together these two changes result in a significant memory savings.

The above changes are already improvements, but will not allow us to run propagation
code on the same node as the GPU unless we reduce the amount of CPU needed to the point



Figure 3. Left: The amount of events that generate light in the detector as a function of zenith
angle and Muon Energy. Muons in the bottom right of the plot do not have enough energy to make
it to the detector volume and can be safely removed from the simulation without affecting the result.
Right: The undersampling weight as a function of leading muon energy. Muons above 100 TeV are not
undersampled, whereas muons below 1 TeV are undersampled with a probability of 1 in 1000. Muons
with intermediate energy are undersampled at an intermediate rate.

where Corsika and Proposal are running faster than CLSim. To reduce the amount of CPU
required we made two changes to how we process Corsika. Both of these changes were only
made possible by an extension to Corsika written by D. Baack [13] which allows two-way
communication with a running Corsika instance.

The first speedup was to set the muon energy threshold based on the zenith angle of
the shower. CORSIKA takes the minimum energy before it halts propagation of muons as a
parameter. In traditional Corsika, the parameter is fixed for all events, which for extensive air
shower arrays and other typical Corsika applications is rarely a problem. This can, however,
be a significant waste of resources for IceCube, where the chance of a muon reaching the
detector is highly dependent on slant depth as shown in Figure 3. However, the IPC extension
allows us to use a different configuration for every shower. For highly inclined showers the
overburden is significantly greater and the muon threshold can be set much higher than what
is needed for a vertical shower.

The second speedup is related to the fact that most muons do not have sufficient en-
ergy to reach the detector. In a particular shower the muon most likely to reach the detector
is the so-called leading muon, the muon encountered by traversing the particle tree by al-
ways following the highest energy branch. We created an undersampling scheme where we
preferentially select showers with high energy leading muons and halt the calculation of the
remaining showers. The scheme has a single parameter, the undersampling factor s. For each
shower, this undersampling factor is used to find a threshold energy where the probability of
an air shower producing one or more muons of at least that energy is 1/s, using a parameteri-
zation of the average muon yield. The shower is then simulated in descending order of energy
while keeping track of the highest-energy muon observed so far. If it is above the critical en-
ergy, the simulation switches to depth-first propagation and runs to completion. Otherwise,
the simulation is halted according to the probability that the shower would produce one or
more muons of the current energy, relative to the probability of producing one or more muons
above the threshold energy. For maximum muon energies far below the threshold energy, this
probability converges to 1/s. For showers that run to completion, the survival probability is
used to weight the remaining showers up to account for those that were stopped. This scheme
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Figure 4. Tests performed to determine the optimum undersampling factor. MuonFilter, Cascade-
Filter, and HighQFilter are different selections of events based on computations performed at the
South Pole that are intended to identify events likely to be neutrinos. A high factor will result in too few
showers making it to the photon propagation step, starving the GPU of photons. The left plot is using a
primary particle range from 30 TeV to 1 PeV, while the right plot is using 1 PeV to 10 EeV. Too low of
a factor will result in most of the CPU being spent on showers which do not generate muons that emit
light in the detector volume. The vertical axes show the amount of simulation Livetime divided by the
amount of GPU time it takes to generate it; higher is better. A clear preference for a factor of 103 is
clearly seen in both energy ranges.

Table 1. Summary of improvements between old simulation and new parallel simulation. Completed
Walltime is defined as the Walltime of Completed Jobs divided by Walltime of Completed and Failed

jobs.

Old Chain New Chain
Time Per Shower 101µs 3.70µs
Memory/Core 7GB 1GB
Completed Walltime 60% 84%
GPU utilization 45% 80%

allows us to efficiently sample signal-mimicking air showers while retaining a subset of more
typical showers to fill out the phase space. A sample of weights is shown in the right side of
Figure 3. Finding the optimum value for the undersampling factor is discussed below.

While the above changes significantly reduce the amount of computation needed to prop-
agate particles, a single CPU core will still struggle to produce enough showers to fully utilize
the GPU. Since a typical cluster computing configuration has 4 or 8 CPU cores available for
every GPU, we optimized our setup for these conditions. Parallelization is achieved by run-
ning multiple instances of IceTray, each with their own generator and Proposal, but sharing
a single photon propagator server. The more instances of IceTray, the easier it is to keep the
GPU busy, but the less likely to get an available slot in the cluster. We tested parallelization
by creating 1, 2, 4, 8, or 16 instances of IceTray, with 8 instances being optimal for our
computing resources.

In addition to the memory savings described above, parallel IceTray also distributes the
memory resources across the allocated cores preventing exceeding memory limits. Since the
amount of memory allocated for an event is highly stochastic, 8 instances sharing 8 GB of
memory is significantly less likely to exceed the limit than 8 separate jobs that allocate 1 GB
each.
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Figure 5. Comparison between the old simulation chain (shown in blue) versus the new chain (shown
in orange.) Very good agreement is seen, the discrepancy is believed to originate from different settings
used for the atmospheric model used by Corsika for propagating cosmic ray air showers.

5 Results

To optimize the value of the undersampling factor, we tested different values on Open Science
Grid, the results of which are shown in Figure 4. A clear preference for a value of 103 is seen,
which results in a 20× performance improvement in producing Livetime compared to no
undersampling.

To summarize, the client–server chain exhibits multiple benefits at all energy scales: At
low energies the Input/Output bottlenecks that were present are removed by using IPC to
communicate with Corsika instead of copying large output files between compute nodes. At
medium energies the calculations requiring CPUs are reduced to the point where they can be
performed on the same node and in parallel with the GPU calculations. And at high energies
the chances of a job halting memory spike is significantly reduced. As seen in Figure 5 very
good agreement is seen in the observables of the new and old simulation. A comparison of
the performance between the old simulation chain and the new client–server chain is shown
in Table 1.

6 Future Directions

Going forward, the new simulation chain allows for a number of possible improvements that
would not have been available with the old chain.

Since the simulation chain is now freed from relying on Corsika to generate primary di-
rections, another way to increase the efficiency of simulation would be to oversample certain
regions of interest. Many IceCube analyses have identified preferred air shower trajectories
that have a higher chance of mimicking signal after quality cuts than others.



Additional oversampling can also be applied to the development of the air shower in
Corsika. For tau neutrino analyses and other high energy analyses, understanding the contri-
bution from prompt decays of particles like charmed hadrons in the air shower is important,
so we could oversample such showers. There also exist cosmic ray analyses which look for
showers with high transverse momentum interactions. To study these we could also oversam-
ple such showers.

Other techniques also become available with the new simulation chain which were not
available with traditional Corsika. It required that all of the showers in the same run be simu-
lated with the same configuration. This would require that, for running combined IceTop and
InIce Simulation, the electromagnetic component of the shower be simulated for all events.
Separate configurations can now be sent based on the location of the shower, such that the
electromagnetic component is only simulated for showers which intersect IceTop.

Another technique that is now available would be to preferentially simulate air show-
ers that produce high-energy neutrinos. Such simulations would be useful for studies of
downward-going atmospheric neutrinos, which may be observed together with muons from
the same shower. Finally, the improved efficiency of the new simulation chain can be used
for studies which parameterize the muon flux at different detector depths. These are needed
for MuonGun, a simulation generator which starts with the muon at detector depths, adapted
from MuPage [14]. Further improvements are also expected with Corsika 8 [15, 16] which
has been rewritten in C++. This rewrite will allow better incorporation of our client–server
code than the previous monolithic code of Corsika 7.
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