
APEIRON: a Framework for High Level Programming of
Dataflow Applications on Multi-FPGA Systems

Roberto Ammendola2, Andrea Biagioni1, Carlotta Chiarini13, Andrea Ciardiello3, Paolo
Cretaro1, Ottorino Frezza1, Francesca Lo Cicero1, Alessandro Lonardo1, Michele
Martinelli1, Pier Stanislao Paolucci1, Luca Pontisso1, Francesco Simula1, Cristian Rossi1,∗,
Matteo Turisini14, and Piero Vicini1

1Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tor Vergata, Rome, Italy
3Università di Roma "La Sapienza", Rome, Italy
4CINECA, Bologna, Italy

Abstract. High Energy Physics (HEP) Trigger and Data Acquisition systems
(TDAQs) need ever increasing throughput and real-time data analytics capa-
bilities either to improve particle identification accuracy and further suppress
background events in trigger systems or to perform an efficient online data re-
duction for trigger-less ones.
As for the requirements imposed by HEP TDAQs applications in the class
of real-time dataflow processing, FPGA devices are a good fit inasmuch they
can not only provide adequate compute, memory and I/O resources but also a
smooth programming experience thanks to the availability of High-Level Syn-
thesis (HLS) tools.
The main motivation for the design and development of the APEIRON frame-
work is that the currently available HLS tools do not natively support the de-
ployment of applications over multiple FPGA devices, which severely chokes
the scalability of problems that this approach could tackle. To overcome this
limitation, we envisioned APEIRON as an extension of the Xilinx Vitis frame-
work able to support a network of FPGA devices interconnected by a low-
latency direct network as the reference execution platform.
Developers can define scalable applications, using a dataflow programming
model inspired by Kahn Process Networks, that can be efficiently deployed on
a multi-FPGAs system: the APEIRON communication IPs allow low-latency
communication between processing tasks deployed on FPGAs, even if they are
hosted on different computing nodes. Thanks to the use of HLS tools in the
workflow, processing tasks are described in C++ as HLS kernels, while com-
munication between tasks is expressed through a lightweight C++ API based
on non-blocking send() and blocking receive() operations.

∗e-mail: cristian.rossi@roma1.infn.it

1 Introduction

The APEIRON framework [1] aims at offering hardware and software support for running
real-time dataflow applications on a network of interconnected FPGAs.
The general APEIRON architecture has been developed on a custom distributed processing
platform composed by m input data streams recombined through n processing layers using
a low-latency, modular and scalable network infrastructure. This mimics the workflow of a
typical TDAQ application: data keeps flowing from the readout to a trigger processor or a
storage system through layers of processing stages.
Developers have the capability of deploying scalable application on a multi-FPGAs system
via a dataflow programming model inspired by Kahn processing networks. This will allow
to map computational dataflow graph (Fig. 1b) onto the underlying network of FPGAs via a
simple configuration tool that instructs the framework to create all the files required for the
FPGA bitstream generation and to build the application interconnection logic (Fig. 1a).

(a) APEIRON interconnection logic: Communication IPs
managing data streams I/O and communication between HLS
computing tasks. (represented as yellow ovals).

(b) Dataflow graph
mapped on 4 intercon-
neted FPGAs system

Processing tasks can be implemented in C/C++ and deployed on the different FPGA nodes
thanks to the use of High Level Synthesis tools (e.g. Xilinx Vitis). Communication between
tasks is expressed through a lightweight API (called HAPECOM) based on non-blocking
send() and blocking receive() operations and is implemented by the APEIRON communica-
tion IP (Fig. 1a).

2 Motivation

The main motivation for the design and development of the APEIRON framework is that the
currently available HLS tools do not natively support the deployment of applications over
multiple FPGA devices, which severely chokes the scalability of problems that this approach
could tackle. To overcome this limitation, we envisioned APEIRON as an extension of the
Xilinx Vitis HLS framework able to support a network of FPGA devices interconnected with
a low-latency direct network as the reference execution platform. For what concerns its usage
in HEP experiments, APEIRON project aims at developing a flexible framework enabling the
rapid development of both traditional "low level" trigger systems or data reduction stages in
trigger-less ones or streaming readout experimental setups characterized by high event rates.

3 APEIRON Building blocks

3.1 Communication IP

The Communication IP represents the main enabling component of the APEIRON frame-
work and is based on the HPC direct network designs previously developed by our group,
like APEnet [2] and ExaNet [3].
The Communication IP implements within the framework a direct network which allows
low-latency data transfer between processing tasks deployed on the same FPGA (intra-node
communication) and on different FPGAs (inter-node communication). These processing
tasks are implemented as HLS kernels; the details of their definition in the framework and of
their interface with the IP are presented in Sec. 3.2.1.

Figure 2: Communication IP hardware block structure with HLS kernels performing intra-
node (red line) and inter-node (green line – receive, blue line– send) communications.

Figure 2 shows the Communication IP hardware block structure, which contains a Network
IP and a Routing IP, both developed in VHDL for Xilinx Alveo U200 and U280 cards.
The Routing IP defines the switching technique and routing algorithm and consists in the
Switch component, the Configuration/Status Registers and the InterNode and IntraNode in-
terfaces. The Switch component dynamically interconnects all ports of the IP, routing be-
tween source and destination ports. Dynamic links are managed by routing logic together
with arbitration logic: the Router configures the proper path across the switch while the Ar-
biter solves contentions between packets requiring the same port.
For inter-node communications, the routing policy applied is the dimension-order (DOR)
one: it consists in reducing the offset along one dimension to zero before considering the
offset in the next dimension in antilexicographic order.
The employed switching technique (i.e., when and how messages are transferred) is Virtual
Cut-Through (VCT) [4]: the router starts forwarding the packet as soon as the algorithm has
picked a direction and the buffer used to store the packet has enough space. The deadlock-
avoidance of DOR routing is guaranteed by the implementation of two virtual channels for
each physical channel (with no fault-tolerance guaranteed) [5].
The transmission is packet-based: the Communication IP sends, receives and routes packets
with a header, a variable size payload and a footer.

3.2 Runtime Software Stack

The APEIRON framework currently supports Xilinx Ultrascale PCIe-based accelerator cards.
We designed a runtime software stack based on the Xilinx Runtime (XRT) architecture, which

Figure 3: APEIRON Software Stack scheme

is implemented as a combination of user-space and kernel driver components [6]. The APE-
IRON runtime software stack is built on top of the XRT one, adding three layers as shown in
Fig. 3, to:

• add the functionalities required to manage multiple FPGA execution platforms (e.g., pro-
gram the devices, configure the IPs, start/stop execution, monitor the status of IPs, ...);

• eliminate, or at least reduce, the impact of changes in XRT API introduced with any new
version of Vitis on the APEIRON host-side applications;

• decouple the APEIRON software stack from the specific platform, easing the future porting
of the framework to different platforms/vendors, ideally by extending the APEIRON library
layer only.

Apeirond is a persistent daemon used to manage multiple access requests from user apps
to the board. It uses functions exposed by the APEIRON library to operate on the devices.
Apeirond module accepts client connections over a network socket (using the module called
apeirons) and oversees creating the socket with the client and handling the incoming com-
mand (e.g., reading a register or flashing the board).

3.2.1 Workflow for FPGA bitstream generation

Users should prepare a YAML configuration file describing the attributes of each HLS kernel
(number of input and output channels, IntraNode port of the Communication IP to which the
kernel is connected). Starting from this, the APEIRON framework links the Communication
IP and the HLS kernels that are connected to it and generates the bitstream for the overall de-
sign. The only requisite that HLS kernels must satisfy in order to be linked to the framework
is in the format of their prototype that must adhere to this form:

void example_apeiron_task(
[optional kernel-specific list of parameters]
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS])

In this way, the HLS kernel implements a generic stream interface for each communication
channel based on the AXI4-Stream protocol.

3.2.2 HAPECOM Communication API

The communication between kernels is expressed through HAPECOM: a lightweight C++
API based on non-blocking send() and blocking receive() operations. This simple API allows
the HLS developer to perform communications between kernels, either deployed on the same

Figure 4: Interface between Intranode Port 0 and the corresponding HLS Task mediated by
Aggregator and Dispatcher.

FPGA (intra-node communication) or on different FPGAs (inter-node communication) with-
out knowing the details of the underlying packet communication protocol. The HAPECOM
Communication API can be represented with the following pseudo-code:

size_t send (msg, size, dest_node, task_id, ch_id);
size_t receive (ch_id);

where:

• dest_node is the n-Dim coordinate of the destination node (FPGA) in an n-Dim torus
network;

• task_id is the local-to-node receiving task (kernel) identifier (0-3);

• ch_id is the local-to-task receiving FIFO (channel) identifier (0-127).

The Communication Library leverages AXI4-Stream Side-Channels to encode all the infor-
mation needed to forge the packet header. Two APEIRON IPs manage the adaptation to-
ward/from IntraNode ports of the Routing IP: they are Aggregator and Dispatcher, shown
in Fig. 4. The Dispatcher receives incoming packets from the Routing IP and forwards
them to the right input channel, according to the relevant fields of the header. The Aggre-
gator receives outgoing packets from the task and forges the packet header, then filling the
header/data FIFOs of the Routing IP IntraNode port.

3.3 Validation tests: latency and bandwidth tests

In order to assess the performance of the Communication IP, we measured latency and band-
width values for intra-node and inter-node communication by implementing in APEIRON a
multi-task HLS kernel (krnl_sr), connected to every intra-node port of each node and config-
urable by the host in different modes.
In latency test, the kernel in "send_receive" mode reads a payload data item from the FPGA
memory (either BRAM or DDR) and sends and receives it through/from the Communication
IP to/from a second interconnected FPGA, where a kernel in "pipe" mode has the task of
receiving a single packet and bouncing it back to the initiator FPGA, allowing the measure-
ment of inter- and intra-node latency dividing the roundtrip latency by two (Roundtrip and
Localtrip modes respectively). In Localloop mode, communication involves the same task as

either sender and receiver through the intra-node port it is connected to.
The bandwidth test is instead carried out by transferring multiple data packets with fixed
payload size from a “sender” HLS kernel which reads data from the source buffer in FPGA
memory (either DDR or BRAM) and pushes them through the Communication IP to another
FPGA where a “receiver” HLS kernel writes data into the destination buffer in memory. Af-
ter receiving the number of data packets whose integrated payload adds up to the size of the
receive buffer, the second FPGA pings back a single “ACK” packet with minimal payload to
confirm the reception (one-way mode).

3.3.1 Results

The results obtained for latency tests are reported in Fig.5a indicating the type of tests per-
formed and what kind of FPGA memory is used. In detail, the result obtained shows how the
latency values get worse when working with DDR memory, due to overhead issues and to the
time required to load the sent buffer from CPU on the FPGA and to store the received buffer
from the FPGA to CPU (we refer to these as “sync” operations).
Latency reaches a value slightly below 1 µs for 16 B payload packets in the inter-node
"roundtrip" BRAM case, and a value of ∼250 ns in the intra-node "localloop" BRAM case.
For what concern bandwidth tests, in Fig.5b it is possible to notice that, referring to the
BRAM cases, bandwidth tends to saturate while increasing the size of the packets sent. In
particular, for packets of size 4 kB the bandwidth reaches a value of ∼12.0 Gbps for the com-
pletely overlapped intra-node loopback BRAM case and for the and inter-node BRAM case,
with a maximum theoretical value of raw bandwidth equal to 12.8 Gbps (given by the BW
limit of 128bit 100MHz of the data injection at router port): the difference is mainly due to
the packet protocol overhead.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

16 32 64 128 256 512 1k 2k 4k

T
im

e
(u

s)

Message size (Byte)

Latency

Roundtrip, DDR + sync
Roundtrip, BRAM
Localloop, DDR + sync
Localloop, BRAM
Localtrip, DDR + sync
Localtrip, BRAM

(a) Latency values measured between HLS Ker-
nels for an intra-node (loopback) and inter-node
(roundtrip) communication.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

16 32 64 128 256 512 1k 2k 4k

B
an

dw
id

th
 (

M
B

/s
)

Message size (Byte)

Bandwidth

oneway DDR
oneway BRAM
loopback BRAM
looopback DDR

(b) Bandwidth values measured between HLS Ker-
nels for an intra-node (loopback) and inter-node
(oneway) communication.

4 APEIRON Use Case

We adopt a Convolutional Neural Network (CNN) we developed to perform online particle
identification with the RICH detector of the NA62 experiment [7] as the example processing
task to demonstrate the scalability features of the framework. This CNN model has been
developed using Tensorflow/Keras and deployed on FPGA with the HLS4ML [8] software
package. The model receives as input a 16x16 image of the hit photomultipliers (PMTs) map

for each physics event and produces an estimate for the number of charged particles it con-
tains. Considering the high event rate of the experiment, sustaining an adequate processing
throughput is the main challenge for such a system.

Figure 6: Test setup for the Imagifier+CNN kernel system.

The setup used to test the performance of this implementation with APEIRON is depicted
in Fig.6. Up to four interconnected FPGAs (Xilinx® Alveo U200) are used as nodes of an
APEIRON deployment with distinct roles:

1. Preprocessing node: data are loaded from Host memory and sent through the network
via an HLS kernel (krnl_sender). Data are then processed by an Imagifier HLS kernel
which turns the PMT hitlist information into a 256bit word (16x16 B&W image) that is
sent to the Computing node through the external links. As second task, this node is in
charge of receiving the output of the CNN computation and storing it on Host memory
via an HLS kernel (krnl_receiver). The processing time, from the first packet sent to
the last received, is measured on this node.

2. Computing node: images coming from external links are taken as input and dispatched
to one or both the CNN HLS kernels (depending on the configuration) to compute the
predictions. Results are then sent back to the preprocessing node.

We have scaled the system from 2 nodes (one preprocessing and one computing) up to 4 as
shown in Fig.6 while the processing time per event and the integrated processing throughput
of the system were measured; results are tabulated for the former and plotted for the latter in
Fig.7 (throughput is in millions of events per second, MHz in figure). The presented results
show the good scaling of system performance with the number of nodes. The flattening slope
of the curve when the number of CNNs goes beyond 4 is mainly due the saturation of the
data injection rate in the krnl_sender on the preprocessing node.

5 Conclusions and Future Work

The APEIRON framework enables the development and deployment of Vitis HLS dataflow
applications distributed across multiple-FPGA systems, as shown by the presented use case.
The co-design of APEIRON software stack together with its Communication IP allowed

nodes # CNNs Processing time per event (us)
2 nodes 1 CNN 3.440

2 CNNs 1.720
3 nodes 2CNNs 1.720

4CNNs 0.860
4 nodes 3CNNs 1.147

6CNNs 0.731

1 2 3 4 5 6
of CNN HLS kernels

0.2

0.4

0.6

0.8

1

1.2

1.4

T
hr

ou
gh

pu
t (

M
H

z)

Multiple CNN kernel system scaling (implemented in APEIRON)Multiple CNN kernel system scaling (implemented in APEIRON)

Figure 7: Processing time and throughput scaling with an increasing number of CNN HLS
kernels.

reaching very low and deterministic latency and a high fraction of the channel raw bandwidth
for communications between FPGAs, addressing two fundamental bottlenecks for real-time
distributed dataflow applications. We are working to improve the framework and the Com-
munication IP to increase the internal datapath of the IP (to 256 bits) and to use the transceiver
with 4 lanes to support applications requiring an increased communication bandwidth.

Acknowledgment

This work is supported by the INFN National Scientific Commission 5 (APEIRON project),
and by the EuroHPC JU initiative under specific grant agreements No.956831 (TEX-
TAROSSA) and No.955776 (RED-SEA).

References

[1] R. Ammendola, A. Biagioni, C. Chiarini, A. Ciardiello, P. Cretaro, O. Frezza, F.L. Cicero,
A. Lonardo, M. Martinelli, P.S. Paolucci et al., Apeiron: composing smart tdaq systems
for high energy physics experiments (2023), 2307.01009

[2] R. Ammendola, A. Biagioni, O. Frezza, A. Lonardo, F.L. Cicero, P.S. Paolucci, D. Ros-
setti, F. Simula, L. Tosoratto, P. Vicini, Journal of Instrumentation 8, C12022 (2013)

[3] R. Ammendola, A. Biagioni, P. Cretaro, O. Frezza, F. Lo Cicero, A. Lonardo, M. Mar-
tinelli, P. Paolucci, E. Pastorelli, F. Simula et al., The Next Generation of Exascale-Class
Systems: The ExaNeSt Project, in Proceedings - 20th Euromicro Conference on Digital
System Design, DSD 2017, edited by M. Novotny, H. Kubatova, A. Skavhaug (IEEE,
United States, 2017), pp. 510–515, 20th Euromicro Conference on Digital System De-
sign, DSD 2017 ; Conference date: 30-08-2017 Through 01-09-2017

[4] P. Kermani, L. Kleinrock, Computer Networks 66, 4 (2014), leonard Kleinrock Tribute
Issue: A Collection of Papers by his Students

[5] W.J. Dally, C.L. Seitz, IEEE Transactions on Computers C-36, 547 (1987)
[6] https://xilinx.github.io/xrt/master/html/index.html
[7] R. Ammendola, B. Angelucci, M. Barbanera, A. Biagioni, V. Cerny, B. Checcucci,

R. Fantechi, F. Gonnella, M. Koval, M. Krivda et al., Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 929, 1 (2019)

[8] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini,
R. Rivera, N. Tran et al., Journal of Instrumentation 13, P07027 (2018)

