

XkitS：A computational storage framework for
high energy physics based on EOS storage
system

Yaosong Cheng1,*, Yujiang Bi1,3,**, Yaodong Cheng1,2,3, Haibo Li1,2,3, Yu Gao1,2, Minxing
Zhang1,2
1Institute of High Energy Physics, CAS, 100049 Beijing, China
2University of Chinese Academy of Sciences, 100049 Beijing, China
3Tianfu Cosmic Ray Research Center, Institute of High Energy Physics, Chinese Academy of
Sciences, 610041 Chengdu, China

Abstract. Large-scale high-energy physics experiments generate scientific
data at the scale of petabytes or even exabytes, requiring high-performance
data IO for processing. However, in large computing centers, computing and
storage devices are typically separated. Large-scale data transfer has become
a bottleneck for some data-intensive computing tasks, such as data encoding
and decoding, compression, sorting, etc. The time spent on data transfer can
account for 50% of the entire computing task. The larger the amount of data
accessed, the more significant this cost becomes. One attractive solution to
address this problem is to offload a portion of data processing to the storage
layer. However, modifying traditional storage systems to support
computation offloading is often cumbersome and requires a broad
understanding of their internal principles. Therefore, we have designed a
flexible software framework called XkitS, which builds a computable
storage system by extending the existing storage system EOS. This
framework is deployed on the EOS FTS storage server and offloads
computational tasks by invoking the computing capabilities (CPU, FPGA,
etc.) on FTS. Currently, it has been tested and applied in the data processing
of the Large High Altitude Air Shower Observatory (LHAASO), and the
results show that the time spent on data decoding using the computable
storage technology is half of that using the original method.

1 Introduction
We are currently in the era of data. With the rapid development of intelligent technologies in
fields such as autonomous driving, the Internet of Things, and biomedicine, data production
and analysis have become crucial factors in determining productivity. By 2030, the world
will be generating and requiring the processing of nearly 1 YB (yottabyte) of data per year,
posing new challenges for data storage, transmission, and processing. These challenges are

* e-mail: chengys@ihep.ac.cn
** e-mail: biyujiang@ihep.ac.cn

particularly prominent in the field of high-energy physics, as high-energy physics
experiments often rely on large-scale scientific facilities, and the complexity and scale of
these advanced experimental setups are increasing every year, resulting in hundreds of
terabytes of data being generated with each experiment. Taking the Chinese Academy of
Sciences High Energy Physics Science Data Center as an example, the amount of data that
needs to be analyzed annually has reached 400 PB (petabytes), placing an enormous demand
on data storage and computing resources.

 The data processing workflow in high-energy physics experiments typically includes
stages such as data acquisition, filtering, reconstruction, analysis, and simulation. Each stage
requires the simultaneous processing of a large number of events, making it a typical data
and I/O-intensive computation. To facilitate management, data centers and many
international high-energy physics research organizations adopt a storage-compute separation
model[1] to build the entire data analysis environment, as shown in Figure 1. This
environment includes login clusters, storage clusters, computing clusters, etc.

Fig.1 Typical high energy physics data processing environment.

These subsystems are independent of each other and interconnected through a highly
reliable high-speed core network. After users submit computing tasks on the login cluster,
the computing cluster integrates CPU resources from a large number of computing nodes
through a job scheduling system to uniformly schedule and arrange the tasks submitted by
users. Subsequently, the data is read from the storage cluster to execute the computing tasks.

This system architecture provides high efficiency when dealing with small-scale data.
However, with the construction of new-generation experimental facilities, the drawbacks of
the storage-compute separation architecture are also fully exposed in I/O-intensive tasks. In
a complete set of computing tasks, data is first transferred from storage nodes to computing
nodes through the network, and after the computation is completed, the results are transmitted
back to the storage nodes. Frequent data transfer consumes a large amount of network
bandwidth, especially for tasks that only require minimal CPU usage. The time spent on data
transfer may account for 50% or even more of the entire computing task. When such types
of computing tasks are numerous in the computing cluster, it often leads to CPU idle time,
network congestion, packet loss in switches, and many other issues. Figure 2 represents the
data read/write bandwidth of the EOS storage cluster[2] in the data center at a specific
moment.

Fig.2 Data read/write bandwidth of the EOS storage cluster.

 One approach to problem-solving is to increase network bandwidth, but this does not
eliminate CPU waste and can be very costly. Therefore, it is necessary to explore new
computing architectures to address these challenges. Computational storage technology has
been proposed in this context, with the goal of equipping storage units with computing
capabilities. This involves offloading a portion of the computational tasks from the
computing units to the storage units, reducing the amount of data transmitted over the
network, achieving faster response times, and saving energy.

2 Computational storage technology
According to the definition provided by the Computational Storage Technical Workgroup of
the Storage Networking Industry Association (SNIA), computational storage is an
architecture that provides computing capabilities tightly coupled with storage to offload host
computing tasks or reduce data movement[3]. The implementation approaches mainly
include the following:

Fig.3 Three types of computational storage architectures.

Computational Storage Drive (CSD): This involves adding computational acceleration

components such as FPGA to the hard disk drive, enabling the disk itself to possess
computing capabilities and provide computational storage services and persistent data
storage.

Computational Storage Array (CSA): In this approach, computational acceleration
components such as FPGA are added to the disk array controller, empowering the disk array
with computing capabilities.

Computational Storage Processor (CSP): This involves adding dedicated computing chips
(such as ASIC, FPGA, or GPU) directly to the server to process data connected to the server's
hard disk. Since external storage is connected via the motherboard bus like PCIe, CSP can
theoretically manage a large disk capacity.

Based on these architectures, there have been numerous computational storage
implementation solutions internationally. For instance, In the context of the relational
database PolarDB, literature [4] offloads the computationally expensive table scan operations
from the CPU to the computational storage drive. Through collaborative innovations at the
software and hardware levels, they effectively reduced query latency and data transfer
volume in the database. In virtualized environments, the fundamental challenge for applying
computational storage is achieving virtualization in an economically efficient manner.
Literature [5] proposed the FCSV-Engine FPGA card, which utilizes hardware-assisted
virtualization and resource orchestration to achieve high virtualization performance. By
dynamically constructing multiple virtual computational storage devices at the hardware
level, they perform near-storage processing, achieving cost-effectiveness. Literature [6]
extended the data processing and management capabilities of the Ceph distributed storage
system by custom extensions, data partitioning, and structured data storage. This allows
storage servers to semantically interpret object data to execute certain SQL statements. The
benefits include both I/O and computational elasticity, with the storage system automatically
rebalancing objects across available servers.

To better apply computational storage in high-energy physics experiments, we have also
developed our own computational storage solution called XkitS (eXtendable kit for
computational Storage). It is built on the distributed storage system EOS developed by the
European Organization for Nuclear Research (CERN)

3 XkitS: A computational storage framework based on EOS.
EOS is a distributed storage system based on the XrootD framework, consisting of main
modules including the client, metadata server, and data storage server, as shown in Figure 4.
In the metadata server, the authentication, authorization, data scheduling, metadata
management, and storage management tasks are handled by the MGM module, while the
message proxying is done by the MQ module. In the data storage server, the FST module is
responsible for file storage and transfer.

Fig.4 EOS architecture.

When a user program accesses data in EOS, it typically calls built-in methods such as

Open, Write, Read, etc. For example, a command to open a file would be parsed as
Open("root://eos01/eos/data.txt"). When EOS receives this command, it transfers the file
data.txt to the client for subsequent computational tasks. However, as mentioned earlier,
when the data file is large and the computational task is simple, most of the job execution
time is spent on data transfer. One approach to implementing a computational storage

processor (CSP) is as follows: when EOS receives a request to open a file, the file is opened
locally on the FST where it resides, and the computational task is executed on the CPU or
other computational resources of that server. The computation results are then directly written
back to the current FST, saving time on data transfer over the network.

XkitS includes a plugin called EosFstCss that implements this functionality, as shown in
Figure 5.

Fig.5 The functioning mechanism of EosFstCss.

To invoke this functionality, a keyword "ccs" needs to be added at the end of the data

request command to differentiate it from the native data access methods. For example, the
Open command mentioned earlier can be written as:
Open("root://eos01/eos/data.txt?css=sort"). In this command, "?" is the separator, "ccs"
indicates accessing the file through CCSFST instead of FST, and the parameter "sort"
indicates using the sort function specified in the configuration file on the FST server to
perform sorting computation. Therefore, the result returned by this command would be the
sorted data.txt.

In this example, the implementation principle of CCSFST is as follows:

Fig.6 The workflow of EosFstCss.

First, the target file address, "ccs" flag, and corresponding computational storage
algorithm are obtained by parsing the OPEN command. Then, the file is opened on the server
where it is stored and registered with the MGM service. Next, the specified computational
storage algorithm is applied to the target file. The output of the algorithm is written to a local
output file on the node, which is named according to EOS naming rules, such as fid/10000.
If the algorithm itself does not generate an output file, stdout or stderr can be redirected to
the output file. Subsequently, the results are synchronized to the MGM module of the
metadata server and additional replica backups are created. Finally, an Open call is made to
the output file and returned to the client.

When parsing user commands, the client recognizes the computational storage parameters
and notifies the CSSFST in the storage server to perform specific operations on the file
instead of the FST. Based on file I/O, the computational resources of the storage server are

used to execute the computational operations, which are then stored locally on the storage
server or returned to the caller based on the specific type of computational task.

4 Deployment and usage of XkitS
We aim to make the deployment of XkitS plugins as simple as possible, preferably without
modifying any EOS code. This facilitates faster adaptation when updating EOS versions.
Therefore, we have created a cssfst RPM package that depends on EOS's FST service. After
installing it, only two configuration files need to be modified to enable computational storage
functionality in EOS. Specifically, the standard configuration file /etc/xrd.cf.fst needs to be
modified by replacing "xrootd.fslib -2 libXrdEosFst.so" with "xrootd.fslib -2 libEosFstCss.so
-2 libXrdEosFst.so". Then, the configuration file /etc/eoscss.conf needs to be edited to
customize the computational storage functionality. The configuration file is in JSON format
and consists of four main sections: "name", "path", "out", and "postfix". Here is an example
that includes two computational storage functionalities:

{ "sort" : {
 "name" : "sort",
 "path" : "/usr/local/libexec/cssfst/sort.sh",

"out" : false },
 "km2a_decode" : {
 "name" : "km2a-decode",
 "path" : "/usr/local/libexec/cssfst/km2a-decode.sh",
 "out" : true,
 "postfix" : "root"} }

In the configuration file, "name" refers to the algorithm name, which serves as the basis

for client calls to the CSS service and corresponds to the name of the executed algorithm.
"path" is the path to the executable file of the algorithm, which is independent of EOS and is
used to perform computational tasks on files. It can be freely set by the user. "out" and
"postfix" are related. "out" indicates whether the algorithm has an output. If it is set to "true",
"postfix" must be set, which represents the suffix of the output file. If it is set to "false",
"stdout" or "stderr" can be redirected to the output file.

Customized computational storage functionalities are the user's own programs, which can
be shell scripts or other executable files. The programs utilize the CPU, GPU, FPGA
resources of the FST server, and can even be containers (docker, singularity). All executable
programs should take an input file and produce an output file, returning "EXEC_SUCCESS"
or "EXEC_FAILED". Here is an example of a sorting algorithm:

#cat sort.sh
/usr/bin/sort -n $1 > $2
if [$? -eq 0];then
 echo "EXEC_SUCCESS"
exit 0
echo "EXEC_FAILED"
exit 1

Once the configuration is completed, the computational storage functionality can be

invoked using either xrdcp or the dedicated cssclient tool. If using xrdcp, simply append the
CSS function name to the file path. For example: Once the configuration is completed, the
computational storage functionality can be invoked using either xrdcp or the dedicated

cssclient tool. If using xrdcp, simply append the CSS function name to the file path. For
example:

xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort -
The cssclient is based on the XrdPosixXrootd wrapper. Before using it, you need to export

the environment variable EOS_MGM_URL:
export EOS_MGM_URL=root://eos01.ihep.ac.cn/
cssclient -f /eos/user/chyd/data.txt -c sort
We conducted tests using the experimental program "decode" from the Large High

Altitude Air Shower Observatory (LHAASO)[7]. LHAASO is a large-scale cosmic ray
detector array located at an altitude of 4410 meters in southwest China, approximately 2000
km away from Beijing. It generates 12PB of data annually, which is then transferred to
Beijing. The "decode" process converts the raw binary data acquired by the detectors into
ROOT files. This process involves reading and writing a large amount of data but consumes
minimal CPU power. In the traditional computing mode, a compute node reads the raw data
(.dat) from an FST server and writes the output data (.root) to another EOS server. However,
by using the computational storage functionality through XkitS, any XRootd client can
launch the "decode" process on the FST server for local data reading and writing, either
through the XRootd client or cssclient. Figure 7 compares the data processing time between
the two modes. It can be observed that when processing the same file with the same program,
CSSFST only takes half the time compared to the traditional mode.

Fig.7 Running time of the "Decode" in Traditional Mode and Computational Storage Mode.

5 Conclusion
XkitS, which we have developed, is a computational storage implementation method that
utilizes the computing resources of EOS servers. It has the characteristics of scalability,
configurability, ease of deployment, and ease of use. Through real-world cases, we have
demonstrated the high performance advantages of computational storage in simple
computing tasks with large data transfers. Additionally, we can further accelerate data
processing speed by incorporating heterogeneous computing capabilities such as GPU,
CPU/SoC, and FPGA into the storage servers. However, during our development process,
we still encountered some issues, such as the difficulty of reducing data movement in EOS's
RAIN (erasure code) mode and task scheduling between storage servers. We hope to
collaborate with the community to enhance the computational storage functionality and make
it one of the optional features of EOS.

6 Acknowledgments
This work is supported by the National Natural Science Foundation of China (No.12075268).

 This work is partly supported by the Science and Technology Innovation Project of
Institute of High Energy Physics, Chinese Academy of Sciences (No.E15451U2).
 This work is supported by the Youth Innovation Promotion Association of CAS (No.
203013).

References
1. Y.D. Cheng, J.Y. Shi, G. Chen, Overview of High Energy Physics Computing

Environment. Sci. Info. Tech. & Appl. 5(3), 3-10 (2014)
2. P.AJ, S.EA, A.G. EOS as the present and future solution for data storage at CERN.pdf.

J. Phys.: Conf. Ser., 042042 (2015)
3. SNIA-Computational Storage Architecture and Programming Model Version 1.0,

Computational Storage – SNIA on Storage (sniablog.org)
4. W. Cao, Y. Liu, Z. Cheng, et al. POLARDB Meets Computational Storage: Efficiently

Support Analytical Workloads in Cloud-Native Relational Database. FAST, (2020)
5. D. Kwon, W. Lee, D. Kim, et al. SmartFVM: A Fast, Flexible, and Scalable Hardware-

based Virtualization for Commodity Storage Devices. ACM, 2, 18 (2022)
6. J. Lefevre, C.M. Ahn, SkyhookDM: Data Processing in Ceph with Programmable

Storage, 45, 2, (2020)
7. Y.D. Cheng, H.B. Li, et al. Construction and application of LHAASO data processing

platform. Radiat Detect Technol Methods, 6, 418–426 (2022),
https://doi.org/10.1007/s41605-022-00328-2

https://sniablog.org/category/computational-storage/

	1 Introduction
	2 Computational storage technology
	3 XkitS: A computational storage framework based on EOS.
	4 Deployment and usage of XkitS
	5 Conclusion
	6 Acknowledgments
	References

