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Abstract. Large-scale high-energy physics experiments generate scientific 
data at the scale of petabytes or even exabytes, requiring high-performance 
data IO for processing. However, in large computing centers, computing and 
storage devices are typically separated. Large-scale data transfer has become 
a bottleneck for some data-intensive computing tasks, such as data encoding 
and decoding, compression, sorting, etc. The time spent on data transfer can 
account for 50% of the entire computing task. The larger the amount of data 
accessed, the more significant this cost becomes. One attractive solution to 
address this problem is to offload a portion of data processing to the storage 
layer. However, modifying traditional storage systems to support 
computation offloading is often cumbersome and requires a broad 
understanding of their internal principles. Therefore, we have designed a 
flexible software framework called XkitS, which builds a computable 
storage system by extending the existing storage system EOS. This 
framework is deployed on the EOS FTS storage server and offloads 
computational tasks by invoking the computing capabilities (CPU, FPGA, 
etc.) on FTS. Currently, it has been tested and applied in the data processing 
of the Large High Altitude Air Shower Observatory (LHAASO), and the 
results show that the time spent on data decoding using the computable 
storage technology is half of that using the original method.  

1 Introduction 
We are currently in the era of data. With the rapid development of intelligent technologies in 
fields such as autonomous driving, the Internet of Things, and biomedicine, data production 
and analysis have become crucial factors in determining productivity. By 2030, the world 
will be generating and requiring the processing of nearly 1 YB (yottabyte) of data per year, 
posing new challenges for data storage, transmission, and processing. These challenges are 
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particularly prominent in the field of high-energy physics, as high-energy physics 
experiments often rely on large-scale scientific facilities, and the complexity and scale of 
these advanced experimental setups are increasing every year, resulting in hundreds of 
terabytes of data being generated with each experiment. Taking the Chinese Academy of 
Sciences High Energy Physics Science Data Center as an example, the amount of data that 
needs to be analyzed annually has reached 400 PB (petabytes), placing an enormous demand 
on data storage and computing resources. 

 The data processing workflow in high-energy physics experiments typically includes 
stages such as data acquisition, filtering, reconstruction, analysis, and simulation. Each stage 
requires the simultaneous processing of a large number of events, making it a typical data 
and I/O-intensive computation. To facilitate management, data centers and many 
international high-energy physics research organizations adopt a storage-compute separation 
model[1] to build the entire data analysis environment, as shown in Figure 1. This 
environment includes login clusters, storage clusters, computing clusters, etc. 

 

 
Fig.1 Typical high energy physics data processing environment. 
 

These subsystems are independent of each other and interconnected through a highly 
reliable high-speed core network. After users submit computing tasks on the login cluster, 
the computing cluster integrates CPU resources from a large number of computing nodes 
through a job scheduling system to uniformly schedule and arrange the tasks submitted by 
users. Subsequently, the data is read from the storage cluster to execute the computing tasks. 

This system architecture provides high efficiency when dealing with small-scale data. 
However, with the construction of new-generation experimental facilities, the drawbacks of 
the storage-compute separation architecture are also fully exposed in I/O-intensive tasks. In 
a complete set of computing tasks, data is first transferred from storage nodes to computing 
nodes through the network, and after the computation is completed, the results are transmitted 
back to the storage nodes. Frequent data transfer consumes a large amount of network 
bandwidth, especially for tasks that only require minimal CPU usage. The time spent on data 
transfer may account for 50% or even more of the entire computing task. When such types 
of computing tasks are numerous in the computing cluster, it often leads to CPU idle time, 
network congestion, packet loss in switches, and many other issues. Figure 2 represents the 
data read/write bandwidth of the EOS storage cluster[2] in the data center at a specific 
moment. 

 



 
Fig.2 Data read/write bandwidth of the EOS storage cluster. 
 
 One approach to problem-solving is to increase network bandwidth, but this does not 
eliminate CPU waste and can be very costly. Therefore, it is necessary to explore new 
computing architectures to address these challenges. Computational storage technology has 
been proposed in this context, with the goal of equipping storage units with computing 
capabilities. This involves offloading a portion of the computational tasks from the 
computing units to the storage units, reducing the amount of data transmitted over the 
network, achieving faster response times, and saving energy. 

2 Computational storage technology 
According to the definition provided by the Computational Storage Technical Workgroup of 
the Storage Networking Industry Association (SNIA), computational storage is an 
architecture that provides computing capabilities tightly coupled with storage to offload host 
computing tasks or reduce data movement[3]. The implementation approaches mainly 
include the following: 

 

 
Fig.3 Three types of computational storage architectures. 

 
Computational Storage Drive (CSD): This involves adding computational acceleration 

components such as FPGA to the hard disk drive, enabling the disk itself to possess 
computing capabilities and provide computational storage services and persistent data 
storage. 

Computational Storage Array (CSA): In this approach, computational acceleration 
components such as FPGA are added to the disk array controller, empowering the disk array 
with computing capabilities. 



Computational Storage Processor (CSP): This involves adding dedicated computing chips 
(such as ASIC, FPGA, or GPU) directly to the server to process data connected to the server's 
hard disk. Since external storage is connected via the motherboard bus like PCIe, CSP can 
theoretically manage a large disk capacity. 

Based on these architectures, there have been numerous computational storage 
implementation solutions internationally. For instance, In the context of the relational 
database PolarDB, literature [4] offloads the computationally expensive table scan operations 
from the CPU to the computational storage drive. Through collaborative innovations at the 
software and hardware levels, they effectively reduced query latency and data transfer 
volume in the database. In virtualized environments, the fundamental challenge for applying 
computational storage is achieving virtualization in an economically efficient manner. 
Literature [5] proposed the FCSV-Engine FPGA card, which utilizes hardware-assisted 
virtualization and resource orchestration to achieve high virtualization performance. By 
dynamically constructing multiple virtual computational storage devices at the hardware 
level, they perform near-storage processing, achieving cost-effectiveness. Literature [6] 
extended the data processing and management capabilities of the Ceph distributed storage 
system by custom extensions, data partitioning, and structured data storage. This allows 
storage servers to semantically interpret object data to execute certain SQL statements. The 
benefits include both I/O and computational elasticity, with the storage system automatically 
rebalancing objects across available servers. 

To better apply computational storage in high-energy physics experiments, we have also 
developed our own computational storage solution called XkitS (eXtendable kit for 
computational Storage). It is built on the distributed storage system EOS developed by the 
European Organization for Nuclear Research (CERN) 

3 XkitS: A computational storage framework based on EOS. 
EOS is a distributed storage system based on the XrootD framework, consisting of main 
modules including the client, metadata server, and data storage server, as shown in Figure 4. 
In the metadata server, the authentication, authorization, data scheduling, metadata 
management, and storage management tasks are handled by the MGM module, while the 
message proxying is done by the MQ module. In the data storage server, the FST module is 
responsible for file storage and transfer. 

 
Fig.4 EOS architecture. 

 
When a user program accesses data in EOS, it typically calls built-in methods such as 

Open, Write, Read, etc. For example, a command to open a file would be parsed as 
Open("root://eos01/eos/data.txt"). When EOS receives this command, it transfers the file 
data.txt to the client for subsequent computational tasks. However, as mentioned earlier, 
when the data file is large and the computational task is simple, most of the job execution 
time is spent on data transfer. One approach to implementing a computational storage 



processor (CSP) is as follows: when EOS receives a request to open a file, the file is opened 
locally on the FST where it resides, and the computational task is executed on the CPU or 
other computational resources of that server. The computation results are then directly written 
back to the current FST, saving time on data transfer over the network. 

XkitS includes a plugin called EosFstCss that implements this functionality, as shown in 
Figure 5. 

 
Fig.5 The functioning mechanism of EosFstCss. 

 
To invoke this functionality, a keyword "ccs" needs to be added at the end of the data 

request command to differentiate it from the native data access methods. For example, the 
Open command mentioned earlier can be written as: 
Open("root://eos01/eos/data.txt?css=sort"). In this command, "?" is the separator, "ccs" 
indicates accessing the file through CCSFST instead of FST, and the parameter "sort" 
indicates using the sort function specified in the configuration file on the FST server to 
perform sorting computation. Therefore, the result returned by this command would be the 
sorted data.txt.  

In this example, the implementation principle of CCSFST is as follows: 
 

 
Fig.6 The workflow of EosFstCss. 
 

First, the target file address, "ccs" flag, and corresponding computational storage 
algorithm are obtained by parsing the OPEN command. Then, the file is opened on the server 
where it is stored and registered with the MGM service. Next, the specified computational 
storage algorithm is applied to the target file. The output of the algorithm is written to a local 
output file on the node, which is named according to EOS naming rules, such as fid/10000. 
If the algorithm itself does not generate an output file, stdout or stderr can be redirected to 
the output file. Subsequently, the results are synchronized to the MGM module of the 
metadata server and additional replica backups are created. Finally, an Open call is made to 
the output file and returned to the client. 

When parsing user commands, the client recognizes the computational storage parameters 
and notifies the CSSFST in the storage server to perform specific operations on the file 
instead of the FST. Based on file I/O, the computational resources of the storage server are 



used to execute the computational operations, which are then stored locally on the storage 
server or returned to the caller based on the specific type of computational task. 

4 Deployment and usage of XkitS 
We aim to make the deployment of XkitS plugins as simple as possible, preferably without 
modifying any EOS code. This facilitates faster adaptation when updating EOS versions. 
Therefore, we have created a cssfst RPM package that depends on EOS's FST service. After 
installing it, only two configuration files need to be modified to enable computational storage 
functionality in EOS. Specifically, the standard configuration file /etc/xrd.cf.fst needs to be 
modified by replacing "xrootd.fslib -2 libXrdEosFst.so" with "xrootd.fslib -2 libEosFstCss.so 
-2 libXrdEosFst.so". Then, the configuration file /etc/eoscss.conf needs to be edited to 
customize the computational storage functionality. The configuration file is in JSON format 
and consists of four main sections: "name", "path", "out", and "postfix". Here is an example 
that includes two computational storage functionalities: 

 
{ "sort" :     { 
   "name" : "sort", 
   "path" : "/usr/local/libexec/cssfst/sort.sh", 

"out"  : false }, 
  "km2a_decode" : { 
   "name" : "km2a-decode", 
   "path" : "/usr/local/libexec/cssfst/km2a-decode.sh", 
   "out"  : true, 
   "postfix" : "root"} } 
 

 
In the configuration file, "name" refers to the algorithm name, which serves as the basis 

for client calls to the CSS service and corresponds to the name of the executed algorithm. 
"path" is the path to the executable file of the algorithm, which is independent of EOS and is 
used to perform computational tasks on files. It can be freely set by the user. "out" and 
"postfix" are related. "out" indicates whether the algorithm has an output. If it is set to "true", 
"postfix" must be set, which represents the suffix of the output file. If it is set to "false", 
"stdout" or "stderr" can be redirected to the output file. 

Customized computational storage functionalities are the user's own programs, which can 
be shell scripts or other executable files. The programs utilize the CPU, GPU, FPGA 
resources of the FST server, and can even be containers (docker, singularity). All executable 
programs should take an input file and produce an output file, returning "EXEC_SUCCESS" 
or "EXEC_FAILED". Here is an example of a sorting algorithm: 

 
#cat sort.sh  
/usr/bin/sort -n $1 > $2  
if [ $? -eq 0 ];then  
 echo "EXEC_SUCCESS"  
exit 0  
echo "EXEC_FAILED"  
exit 1   

 
Once the configuration is completed, the computational storage functionality can be 

invoked using either xrdcp or the dedicated cssclient tool. If using xrdcp, simply append the 
CSS function name to the file path. For example: Once the configuration is completed, the 
computational storage functionality can be invoked using either xrdcp or the dedicated 



cssclient tool. If using xrdcp, simply append the CSS function name to the file path. For 
example: 

xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort - 
The cssclient is based on the XrdPosixXrootd wrapper. Before using it, you need to export 

the environment variable EOS_MGM_URL: 
export EOS_MGM_URL=root://eos01.ihep.ac.cn/ 
cssclient -f /eos/user/chyd/data.txt -c sort 
We conducted tests using the experimental program "decode" from the Large High 

Altitude Air Shower Observatory (LHAASO)[7]. LHAASO is a large-scale cosmic ray 
detector array located at an altitude of 4410 meters in southwest China, approximately 2000 
km away from Beijing. It generates 12PB of data annually, which is then transferred to 
Beijing. The "decode" process converts the raw binary data acquired by the detectors into 
ROOT files. This process involves reading and writing a large amount of data but consumes 
minimal CPU power. In the traditional computing mode, a compute node reads the raw data 
(.dat) from an FST server and writes the output data (.root) to another EOS server. However, 
by using the computational storage functionality through XkitS, any XRootd client can 
launch the "decode" process on the FST server for local data reading and writing, either 
through the XRootd client or cssclient. Figure 7 compares the data processing time between 
the two modes. It can be observed that when processing the same file with the same program, 
CSSFST only takes half the time compared to the traditional mode. 

 

 
 

 
Fig.7 Running time of the "Decode" in Traditional Mode and Computational Storage Mode. 

5 Conclusion 
XkitS, which we have developed, is a computational storage implementation method that 
utilizes the computing resources of EOS servers. It has the characteristics of scalability, 
configurability, ease of deployment, and ease of use. Through real-world cases, we have 
demonstrated the high performance advantages of computational storage in simple 
computing tasks with large data transfers. Additionally, we can further accelerate data 
processing speed by incorporating heterogeneous computing capabilities such as GPU, 
CPU/SoC, and FPGA into the storage servers. However, during our development process, 
we still encountered some issues, such as the difficulty of reducing data movement in EOS's 
RAIN (erasure code) mode and task scheduling between storage servers. We hope to 
collaborate with the community to enhance the computational storage functionality and make 
it one of the optional features of EOS. 
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