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Abstract. CaTS [6]is an advanced example that is part of Geant4 since version
11.0. It demonstrates the use of Opticks to offload the simulation of optical
photons to GPUs. Opticks interfaces with the Geant4 toolkit to collect all the
necessary information to generate and trace optical photons, re-implements the
optical physics processes to be run on the GPU, and automatically translates the
Geant4 geometry into a GPU appropriate format. To trace the photons, Opticks
uses NVIDIA OptiX®. In this report, we describe CaTS and the integration
of Opticks with Geant4. We demonstrate that the generation and tracing of
optical photons represents an ideal application to be offloaded to GPUs, fully
utilizing the high degree of available parallelism. In a typical liquid argon TPC
simulation, a speedup of several hundred times is observed compared to an
equivalent simulation using single threaded Geant4.

1 Introduction

In Geant4 [1], optical physics has an exceptional position among the physics processes, as it
adds a new particle, optical photon together with optical properties for materials and optical
surfaces. The optical photon can be reflected or refracted at optical surfaces and it can only
be created in the optical processes scintillation, Cerenkov radiation, and wavelength-shifting
(WLS). This makes the G4OpticalPhoton different from the “usual” high energy physics pho-
ton (G4Gamma) in Geant4. Optical properties need to be assigned to the materials whenever
optical physics processes are to be considered in the simulation. Every material needs at least
a refractive index spectrum (which corresponds to the dispersion relation) in addition an at-
tenuation length spectrum,should be defined though the attenuation length is by default set to
infinity if it is not defined. Special optical materials, such as scintillating and WLS materials,
additionally require the specification of the emission spectra as well as up to 3 decay times.
Optionally, one can also specify the rise time of the scintillation light, but this is not currently
supported by the Opticks [2] implementation of the scintillation process. More properties can
be assigned to optical surfaces between volumes, for example, the reflectivity of the surface.
In Geant4 and Opticks, optical properties (such as the materials refractive index, Rayleigh
scattering length or absorption length) are inputs that have to be provided by the user when
the detector is constructed. The properties are either bulk properties or boundary properties
(G4OpticalSurfaces). Geant4 only traces optical photons for materials for which at least the
refractive index is defined, otherwise the optical photons are killed. High-precision modeling
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of light production, transport and detection in general requires the use of the best available
values to describe the optical properties.

Liquid argon TPCs are of special interest for current and future neutrino experiments at
Fermilab, therefore we decided to use a simplified liquid argon TPC as an example. A good
introduction to scintillation light in liquid argon can be found elsewhere [3]. The scintilla-
tion process in liquid argon is relatively complicated including various excimer states which
can be induced by ionization, but not by the scintillation photons themselves. For that rea-
son, reemmission of scintillation light does not play a role in liquid argon which is highly
transparent to its own scintillation light with the absorption length on the order of several
meters depending on purity. The wavelength of the scintillation photons produced in liquid
argon is in the vacuum ultraviolet (VUV) with a wavelength of 128 nm. In the simulation,
the emission spectrum is modeled as a Gaussian function centered at 128 nm with a width of
10 nm. The values of optical properties used in the simulation are given in table 1. Many of
the properties were extracted from [4] or were calculated using the formula given therein.

Property Value
Scintillation yield (E = 0) 50000/MeV
Time constant of fast component 6 ns
Time constant of slow component 1590 ns
Fraction of fast component 0.75
Fraction of slow component 0.25
Rise time 0 ns
Emission spectrum peak 128 nm
Emission spectrum width 10 nm
Absorption length 10 m at 128 nm
Rayleigh scattering length 90 cm at 128 nm
Refraction index 1.4 at 128 nm

Table 1. Optical properties of the liquid argon used by CaTS.

When an electric field is applied across liquid argon, there are two competing and anti-
correlated processes involved: ionization and scintillation. Ionization occurs when ions and
electrons are separated due to the electric field, before they can recombine and cause scin-
tillation. This reduces the scintillation yield. The electrons then drift along the electric field
lines towards a detection plane where they produce a signal at wire planes in a stereo layout
or at pixels. The electron drift is part of the detector response and therefore is not considered
in the simulation. For this report, we use a very simple geometrical configuration of a liquid
argon TPC which consists of a box of liquid argon with x y z dimensions of 1 x 1 x 2 m
shown in figure 1. There are five photo detectors shown in red attached to the side. There is
no E-field so we assume all the deposited energy is converted to scintillation. Figure 1 shows
the simulation of a 2 GeV electron shower. Due to the low atomic number (Z = 18) and low
density (ρ = 1.78 g/cm3) of liquid argon, the shower is not fully contained in the detector. In
this case, around 7 × 107 VUV scintillation photons are produced. Using Geant4 (11.1.2) to
simulate the photon generation and propagation on a single core Intel® Core i9-10900k 3.7
GHz takes more than 5 minutes per event compared to 0.034 seconds per event when no op-
tical photon simulation is performed. Currently, most LArTPC-based experiments use look
up tables and parametrizations instead of full simulation for the optical photon response.



Figure 1. Simulation of a 2 GeV electron shower. Shown are only steps and particle tracks, but no
optical photons.

2 Simulation of optical photons: an ideal application to be ported to
GPUs.

The simulation of optical photons seems an ideal application to be ported to GPUs for the
following reasons. Only one particle type, the optical photon is involved, but there are many
of them (≈ 107/event), which allows for massive parallelism. Especially when the number of
reflections is limited, one expects low latency and no big fluctuations in computing time for
each optical photon. No new particle types besides optical photons are produced. Only a few
physics processes need to be implemented on the GPU. The processes involved in generating
optical photons are: G4Cerenkov, G4Scintillation (reemission) and G4OpWLS1. The pro-
cesses involved in the transportation of optical photons are G4OpAbsorption, G4OpRayleigh
and G4OpBoundaryProcesses with various surface models. These processes do not need a
lot of input data. All the information necessary to generate optical photons are collected
in so called GenSteps for the Cerenkov and scintillation processes, so there is little data to
transfer from host (CPU) to device (GPU). Only a small fraction of photons reaches the
photo-detectors and produces a photon-hit, so very little data has to be transferred back from
the device to the host. Optical ray tracing is a well-established field so one benefits from the
availability of efficient algorithms (in this case OptiX® [5]). Using NVIDIA® hardware and
software (CUDA®, OptiX®) has both disadvantages and advantages. On one hand, one is
committed to a specific hardware and software vendor compared to a more generic software
solution that allows the use of various GPU types. On the other hand, one gains performance
benefits from optimal use of the NVIDIA® hardware. For example, hardware acceleration
RTX (Ray Tracing texel eXtreme) was introduced in 2018 with the Geforce 20 series and is
now in the third generation (Geforce 40) doubling in performance in each generation. RTX
is fully supported by OptiX®.

1WLS is currently not used in our Geant4 simulation and the process is not implemented in Opticks yet.



3 Opticks

Opticks is an open-source project developed by Simon Blyth [2]. There are two major ver-
sions: legacy Opticks based on OptiX6® using the G4Opticks API and the latest Opticks
based on OptiX7® using the G4CXOpticks API. Significant re-implementation of Opticks
was made necessary because OptiX7 introduced breaking changes to the OptiX API allowing
more control of GPU memory allocation and data transfers and allowing to benefit from cur-
rent and future GPUs, RT cores and RTX. This update also gives the opportunity to improve
Opticks, making it more flexible and more modular, splitting libraries by dependencies and
splitting up monolithic Cuda files into many small headers. For more details, see reference
[2].

Opticks accelerates optical photon simulation by translating the Geant4 geometry to
OptiX® without approximation for a subset of the solids available in Geant4, implementing
the Geant4 optical processes on the GPU and integrating NVIDIA GPU ray tracing (accessed
via NVIDIA OptiX®). G4(CX)Opticks provides an API to interface Geant4 and Opticks.
The Geant4 advanced example CaTS (Calorimetry and Tracking Simulation) [6] uses this
API to implement a hybrid workflow where the generation and tracing of optical photons is
offloaded to a GPU using Opticks, while the rest of the simulation is done on the CPU using
Geant4. The workflow is shown in figure 2 with the two big blocks representing the CPU
(host) and GPU (device). Geant4 on the CPU/host handles all particle types but the opti-
cal photons. In addition, Geant4 is used to collect the GenSteps and uses the G4Cerenkov
and G4Scintillation processes to calculate the number of optical photons to be generated at a
given step. A Genstep provides all necessary quantities to generate the photons on the GPU.
Besides stepping information like the step length, the Genstep provides the deposited energy
for the scintillation process and 1/β for the Cerenkov process. Copying the GenSteps to the
GPU and then generating the optical photons on it is more efficient than copying many opti-
cal photons to the GPU. The Gensteps are collected in the Geant4 user stepping action and
they are passed to the GPU whenever a certain number of optical photons that needs to be
generated and traced is reached. At the end of an event, all remaining Gensteps are passed to
the GPU to flush each event loop.

Figure 2. Hybrid workflow where the generation and tracing of optical photons is offloaded to a GPU
using Opticks, while the rest of the simulation is done on the CPU using Geant4.



4 CaTS

CaTS (Calorimetry and Tracking Simulation) is a general Geant4 application which was
specifically developed with detector R&D in mind. For R&D, it is beneficial if frequent
changes in detector geometry and physics configuration can be performed at run-time with-
out having to recompile the program. CaTS is included in Geant4 as an advanced example
application since version 11.0. The CaTS application:

• requires no changes to Geant4 to integrate Opticks and only makes use of provided inter-
faces: UserActions, Sensitive Detectors,

• is modular and extensible, allows to build detector setups from predefined components,

• uses GDML with extensions for flexible detector construction at run-time. GDML exten-
sions are used to:

– assign sensitive detectors to logical volumes,
– assign step-limits and energy cuts to logical volumes,
– assign visualization attributes,

• provides a library of sensitive detector classes,

• creates hit collections and uses automated ROOT-based IO,

• supports both the legacy and new Opticks interfaces,

• uses the G4PhysListFactoryAlt physics list factory to define and configure physics at
run-time via command line options (for example, ./CaTS -g simpleLArTPC.gdml -pl
FTFP_BERT+OPTICAL+STEPLIMIT -m time.mac)

• provides run-time and build-time options for G4(CX)Opticks/Geant4,

• provides an option to collect either scintillation and Cerenkov Gensteps, or both.

The G4PhysListFactoryAlt physics list factory provided by Geant4 allows the selection
of one of the various reference physics lists, specify the electromagnetic option as well as
various physics constructors. By default we use the FTFP_BERT reference physics-list, the
default electromagnetic option, as well as the optical physics, step-limiter and neutron killer
physics constructors.

5 Performance

Using Geant4 11.1.2, it takes around 330 seconds/event to simulate photon generation and
propagation with a single core on an Intel® Core i9-10900k@ 3.7 GHz while it takes 0.034
seconds/event without optical photon simulation. When using the legacy version of Opticks,
we observe 1.8 sec/event with a NVIDIA GeForce RTX 3090 GPU which is a speed up of
∼190 times for the simple geometry used. With this speed up, it becomes feasible to run full
optical simulation event-by-event instead of using look up tables and parametrizations. We
observe that one CPU core is sufficient to saturate the GPU.

Modern CPUs are equipped with multiple CPU cores (10 in our case), therefore one
should not compare the performance with a single threaded Geant4 simulation but with the
performance when all cores (plus hyper-threading) are used using Geant4 event based multi-
threading which has been shown to scale well with the number of threads while showing a
smaller memory footprint than running the processes in parallel.



6 Making Opticks available to the LArTPC Experiments

artg4tk is a general Geant4 module for the art [7] event processing framework used by vari-
ous Fermilab experiments. It depends only on art, Geant4 and dependencies thereof. artg4tk
is very flexible and can be configured at run-time. The Geant4 User Actions (Stacking, Step-
ping, Tracking, Event, Run) are implemented as art framework services which can be se-
lected and configured at run-time. Like CaTS, artg4tk uses gdml files with extensions for the
detector configuration and uses the G4PhysListFactoryAlt physics list factory to define and
configure physics at run-time. artg4tk uses an art service to add the Geant4 hit collections to
the RootIO based art event record.

LArSoft [8] is a general software framework for liquid argon TPCs based on art and
LArG4 [9] is a module for LArSoft. LArG4 itself depends on arg4tk. Keeping artg4tk as a
general Geant4 framework, all dependencies (e.g. from lardata objects) introduced by LAr-
Soft are encapsulated in LArG4. The dependencies are also shown in figure 3.

We are in the process of integrating Opticks with artg4tk/LArG4. This task is made
more difficult since build system, package manager as well as Linux distribution are about
to change. For now it will require a hybrid approach with customized cmake files to build
against Opticks and the libraries it depends on. This is only a temporary solution to make it
available to experts who want to try Opticks right now and for integrating artg4tk and LArG4
with Opticks. Once transitioned to the new package manager [10], we expect all products to
be made available with it.

Figure 3. Dependency diagram for LArSoft, LArG4, artg4tk and Opticks.

7 Summary

We have created a Geant4 advanced example CaTS which is part of the Geant4 distribution
since Geant4 4.11.0. CaTS demonstrates a Geant4 hybrid workflow where the generation
and tracing of optical photons is offloaded to a GPU using Opticks, while the rest of the
simulation is done on the CPU. The current version is based on the legacy Opticks using
NVIDIA OptiX6. CaTS has been modified for the new Opticks workflow using OptiX7
and we plan to make it available with the new release of Geant 4 (11.2) planned for this



fall. Changes to the Geant4 material property APIs in the current version of Geant4 (>11.1)
made changes to both CaTS and Opticks necessary while keeping compatibility to previous
versions of Geant4 (>10.0). We are in the process of integrating Opticks with artg4tk/LArG4
to make it available to the LArTPC based experiments.
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