
Opticks : GPU Optical Photon Simulation via NVIDIA OptiX

Simon C. Blyth1,∗

1Institute of High Energy Physics, CAS, Beijing, China.

Abstract. Opticks is an open source project that accelerates optical photon
simulation by integrating GPU ray tracing, accessed via the NVIDIA OptiX
7+ API, with Geant4 based simulations. A single NVIDIA Turing GPU from
the first RTX generation has been measured to provide optical photon simula-
tion speedup factors exceeding 1500 times single threaded Geant4 with a full
JUNO analytic GPU geometry automatically translated from the Geant4 geom-
etry. Optical physics processes of scattering, absorption, scintillator reemission
and boundary processes are implemented in CUDA programs based on Geant4.
Wavelength-dependent material and surface properties as well as inverse cumu-
lative distribution functions for reemission are interleaved into GPU textures
providing fast interpolated property lookup or wavelength generation.
In this work we describe the near complete re-implementation required to adopt
the entirely new NVIDIA OptiX 7+ API, with the implementation now di-
rectly CUDA based with OptiX usage restricted to providing intersects. The
re-implementation features a modular many small header design that enables
fine grained testing both on GPU and CPU together with large code reductions
from CPU/GPU sharing. Enhanced modularity has enabled CSG tree general-
ization to support "list-nodes", similar to G4MultiUnion, that improve perfor-
mance for complex CSG solids. In addition support for interference effects on
boundaries with multiple thin layers, such as anti-reflection coatings and photo-
cathodes, using CUDA compatible transfer matrix method (TMM) calculations
of reflectance, transmittance and absorptance are reported.

1 Introduction

Opticks[1-7] enables Geant4[8-10] based simulations to benefit from high performance GPU
ray tracing made accessible by NVIDIA R© OptiXTM[11-15]. The Jiangmen Underground
Neutrino Observatory (JUNO)[16] under construction in southern China will be the world’s
largest liquid scintillator detector, with a 20 kton spherical volume of 35 m diameter. The
large size and high photon yield, illustrated in Figure 1, makes optical photon simulation
extremely computationally challenging for both processing time and memory resources.
Opticks eliminates these bottlenecks by offloading optical simulation to the GPU. Sequential
simulation of large numbers of optical photons has extreme computational and memory costs.
Opticks enables drastically improved optical photon simulation performance. Although de-
veloped for simulation of the JUNO detector, Opticks supports use with other detector ge-
ometries. Any optical photon limited simulation can benefit from Opticks.

∗Corresponding author e-mail: simon.c.blyth@gmail.com.



Figure 1. Cutaway OpenGL rendering of millions of simulated optical photons from a 200 GeV muon
crossing the JUNO liquid scintillator. Each line corresponds to a single photon with line colors repre-
senting the polarization direction. Primary particles are simulated by Geant4, "gensteps" are uploaded
to the GPU and photons are generated, propagated and visualized all on the GPU.

Opticks was presented to the four prior CHEP conferences, with each contribution cov-
ering different aspects of its development. The 2021 contribution[4] covered initial stages of
the transition to the NVIDIA OptiX 7+ API and the integration of Opticks with detector sim-
ulation frameworks. The 2019 plenary presentation and proceedings[5] focused on RTX[15]
performance measurements. The earlier contributions[6,7] covered the first implementations
of geometry translation and the CUDA port of photon generation and optical physics.

These proceedings describe the almost completely re-implemented Opticks, as required
to adopt the entirely new NVIDIA OptiX 7+ API. Ongoing developments to improve perfor-
mance with complex solid shapes with "list-nodes" are described and modelling of multiple
thin layer interference effects are reported.

1.1 Importance of optical photon simulation

Suppression of cosmic muon induced backgrounds with veto selections are crucial for neu-
trino detectors such as JUNO[16], necessitating production of large simulated samples of
muon events. However, a muon of typical energy 200 GeV crossing the JUNO scintillator
can yield tens of millions of optical photons, which are found with Geant4 simulations to con-
sume more than 99% of CPU time and impose severe memory constraints. As optical photons
in neutrino detectors can be considered to be produced only by scintillation and Cherenkov
processes and yield only hits on photomultiplier tubes, it is straightforward to combine an
external optical photon simulation with a Geant4 simulation of all other particles.

1.2 GPU ray tracing

GPUs evolved to perform rasterized rendering, optimizing throughput[19] rather than min-
imizing latency. GPUs are suited to problems with millions of independent low resource



Figure 2. Hybrid Geant4 + Opticks workflow : G4CXOpticks translates Geant4 geometry to GPU ap-
propriate form. U4 collects "gensteps" enabling GPU generation of scintillation and Cerenkov photons.

parallel tasks allowing thousands of threads to be in flight simultaneously. Optical simula-
tion is well matched to these requirements with abundant parallelism from huge numbers of
photons and low register usage from simplicity of the physics.

The most computationally demanding aspect of photon propagation is the calculation
of intersection positions of rays representing photons with the detector geometry. This ray
tracing limitation of simulation is shared with the synthesis of realistic images in computer
graphics. Many recent NVIDIA GPUs include 3rd generation RTX[15] hardware dedicated
to ray geometry intersection. NVIDIA GPU ray tracing performance continues to improve
rapidly, with performance doubling with each RTX generation.

1.3 NVIDIA R© OptiXTM ray tracing engine

OptiX makes GPU ray tracing accessible with a single ray programming model. Ray tracing
pipelines are constructed combining code for acceleration structure traversal, with user code
for ray generation, intersection and closest hit handling. Spatial index acceleration structures
(AS) provide accelerated ray geometry intersection. OptiX provides only acceleration, not
the intersection itself, thus allowing any form of geometry to be implemented. In August
2019 NVIDIA introduced the OptiX 7 API[14], that together with the Vulkan and DirectX
ray tracing extensions provides access to the same NVIDIA ray tracing technology including
AS construction and RTX hardware access.

2 Hybrid simulation workflow

Figure 2 summarizes the hybrid workflow. At initialization the Geant4 top volume is passed
to Opticks which translates the geometry and uploads it to the GPU as described in section 3.
Geant4 models scintillation and Cerenkov processes with the classes G4Scintillation and
G4Cerenkov. At each simulated step of applicable particles the classes calculate a number
of optical photons to generate depending on particle and material properties, followed by a
loop that generates the optical photons. With the hybrid workflow these classes are modified,
replacing the generation loop with the collection of generation parameters termed "gensteps"
that include the number of photons and the line segment along which to generate them and
all other parameters needed to reproduce photon generation on the GPU. Relocating photon
generation to the GPU avoids CPU memory allocation. Only non-culled photon hits needed
for the next stage electronics simulation require CPU memory allocation.



Figure 3. Render of the PMTs of the JUNO detector comprising 1920x1080 ray traced pixels created
with a CUDA launch under 16 ms using a single NVIDIA TITAN RTX GPU and NVIDIA OptiX 7.

GPU optical photon generation and propagation are implemented in simple headers that
are included into the OptiX ray tracing pipeline that runs in parallel. For each step of the prop-
agation, rays representing photons are intersected with the geometry using simple header in-
tersect functions that are also included into the ray tracing pipeline. The intersected boundary
together with the photon wavelength are used to do interpolated texture lookups of material
properties such as absorption and scattering lengths. Converting these lengths to distances
using pseudorandom numbers and the known exponential distributions allows a comparison
of absorption and scattering distances with geometrical boundary distance to assign photon
histories. Earlier proceedings[7] detail efficient use of the cuRAND[20] pseudorandom gen-
erator.

3 Detector geometry

At initialization Opticks translates between geometry models in the below sequence:

1. Geant4 : deep hierarchy of structural volumes and trees of G4VSolid CSG nodes

2. Opticks stree : intermediate n-ary trees of volumes and CSG nodes

3. Opticks CSGFoundry : GPU model with CSGSolid, CSGPrim and CSGNode

4. NVIDIA OptiX 7+ : Instance and Geometry Acceleration Structures (IAS, GAS)

The stree intermediate model is created from the Geant4 model by U4Tree.h, which tra-
verses the Geant4 volume tree converting materials, surfaces, solids, volumes and sensors.
Subsequently the CSGFoundry model is created from the intermediate model and uploaded
to GPU. The intermediary provides a complete representation of the needed geometry infor-
mation implemented in a minimal way using only a handful of structs, very different from
the heavyweight GGeo model that it replaces. The geometry information formerly managed
with a large number of classes becomes in the stree model separate directories managed by



a single header only struct, NPFold.h, which provides an in memory directory tree of arrays
using a recursive folders of folders of arrays data structure. The complete structural n-ary
tree of volumes and n-ary CSG trees for each G4VSolid are serialized into arrays using first
child and sibling references.

Both the stree and CSGFoundry geometry models are independent of Geant4 and can
be persisted into directories of NumPy[21] binary files. Fast binary file loading and upload-
ing to GPU allows optical simulation and visualization executables to initialize full detector
geometries in less than a second.

3.1 Structural volumes and geometry factorization

The Geant4 model of the JUNO geometry contains almost 400,000 structural volumes or-
ganized in a deep containment tree heirarchy of volumes with associated transforms. The
Opticks approach to modelling these volumes is based upon the observation that many of
the volumes are repeated in groups, corresponding for example to the small number of vol-
umes that represent each type of PMT. Hence an efficient representation must make full use
of geometry instancing to avoid duplication of information on the GPU by storing repeated
elements only once together with 4x4 transforms that specify the locations and orientations
of each instance.

The factorization of the volumes into repeated groups of volumes and a remainder
of other insufficiently repeated volumes is done within the intermediate model by the
stree::factorize method which uses sub-tree digests that represent the geometry and
transforms beneath every node of the geometry tree. The factorization implemented in a
minimal way reproduces the results of the former heavyweight implementation spread across
many classes. The outcome of the factorization is a repeat index on every structural node
allowing the instance transforms of each repeat to be collected.

Each of the factors from the intermediate model become compound CSGSolid within
the CSGFoundry model. For the JUNO geometry the factorization yields ten compound
solids including four different types of PMT assemblies, some of which are repeated many
thousands of times. The instanced CSGSolid typically contain a few CSGPrim, for example
PMT masks and Pyrex and Vacuum volumes of the PMT, and the remainder solid contains
several thousand CSGPrim. The CSGPrim refer to sequences of CSGNode which are one-to-
one related to the sn.h CSG nodes of the intermediate model. These CSG nodes typically
correspond to constituent G4VSolid such as G4Ellipsoid and G4Tubs.

3.2 CSGFoundry geometry model

Table 1 summarizes the role and associations of the vector members of the CSGFoundry struct
which are serialized and uploaded to the GPU forming the inputs to the creation of acceler-
ation structures and also the CSG node parameters used by the CSG intersection functions.
The CSGFoundry model is designed to facilitate creation of OptiX acceleration structures by
the CSGOptiX package. Geometry acceleration structures (GAS) are created from each of the
compound CSGSolid objects and a single instance acceleration structure (IAS) for the entire
geometry is created from the instance transform vector.

3.3 Solid shapes

The stree intermediate model carries solid shape information within an n-ary tree of sn.h
CSG nodes. The Opticks CSG package implements ray primitive shape intersection in simple
headers that are CUDA compatible but can also be used and debugged on the CPU. These



struct, member Associations and role Geant4
Equivalent

qat4 inst instance transform, references CSGSolid None
qat4 tran CSG transform, referenced from CSGSolid None
CSGSolid
solid references sequence of CSGPrim Group of

volumes

CSGPrim prim references sequence of CSGNode, bounding box root
G4VSolid

CSGNode node references CSG transform, node parameters, typecode constituent
G4VSolid

Table 1. Principal std::vector members of CSGFoundry struct with Geant4 equivalent.

functions use implicit equations for the primitives together with the parametric ray equation,
to yield a polynomial in t, the distance along the ray from its origin position. Roots and
derivatives yield intersections and surface normals. Arbitrarily complex solids are described
using constructive solid geometry (CSG) modelling, which builds shapes from the combina-
tion of primitive constituents by boolean set operations and is represented with a binary tree
data structure. Each primitive or operator node is serialized into an array of up to 16 elements.
These elements include float parameters of the primitives and integer index references into
a separate transform array. A complete binary tree serialization with array indices matching
level order tree indices and zeros at missing nodes is used for the serialization of the CSG
trees. This simple serialization allows tree navigation directly from bitwise manipulations
of the serialized array index. Complete binary tree serialization is simple and effective for
small trees but very inefficient with the large trees that result from complex shapes with many
constituent primitives. Prior proceedings[6] describe the use of tree balancing to reduce the
tree depth and avoid poor performance with complex solids. However studies have revealed
that tree balancing is not compatible with the CSG intersection algorithm currently used by
Opticks with some complex shapes.

The Opticks CSG intersection implementation has been generalized into three levels :
tree, node and leaf. This generalization allows the node level to support compound multi-leaf
shapes without resorting to recursion in the intersect function, which is disallowed in OptiX
pipelines. As multi-leaf nodes can be used within binary CSG trees it becomes possible for
complex solids to be represented by binary trees of greatly reduced depth avoiding deep tree
performance issues. The multi-leaf nodes are similar to G4MultiUnion, but are restricted
to leaf constituents. Various types multi-leaf nodes are under development including dis-
contiguous, contiguous and overlap nodes. Communicating the intent of the multi-leaf nodes
allows use of better suited intersect algorithms. For example, a common cause of deep CSG
trees is the subtraction of a union of many "holes" from a base shape. Typically the holes
do not overlap making it possible to use a simple low resource dis-contiguous intersect func-
tion providing more efficient intersection thanks to both reduced tree height and the better
communication of the dis-contiguous nature of the holes.

3.4 Multi-layer thin film interference effects

The JUNO PMT optical model[17] accounts for optical processes inside PMTs including in-
terference effects from thin layers of anti-reflection coating and photocathode between the
PMT glass and interior vacuum. The optical model is implemented using a transfer matrix



Role CPU GPU
simulation steering QSim.hh qsim.h
curandState setup QRng.hh qrng.h
property interpolation QProp.hh qprop.h
event handling QEvent.hh qevent.h
Cerenkov generation QCerenkov.hh qcerenkov.h
scintillation generation QScint.hh qscint.h
texture handling QTex.hh cudaTextureObject_t

Table 2. Simple host/device counterpart pattern adopted by the Opticks QUDARap package.

method (TMM) calculation of reflectance, transmittance and absorption based on layer thick-
nesses and complex refractive indices of the layer materials.

In order to optionally perform equivalent calculations within Opticks a CPU/GPU single
header C4MultiLayrStack.h implementation of TMM has been developed within the Cus-
tom4 package[18]. Custom4 is an optional external package that when available is integrated
with the Opticks QUDARap package providing special optical surface handling that performs
the interference calculations.

4 Optical physics

Opticks optical photon simulation is now implemented in the QUDARap package, that de-
pends only on the SysRap base package and CUDA, with no dependency on OptiX. Table 2
illustrates the simple host/device counterpart pattern adopted where each CPU struct sets
up its GPU counterpart first on the host, uploading constituents and setting device pointers
within a host instance prior to uploading it to the GPU. This approach simplifies GPU/CPU
testing of the simulation.

5 Summary

Opticks enables Geant4-based optical photon simulations to benefit from state-of-the-art
NVIDIA GPU ray tracing, made accessible via the NVIDIA OptiX 7+ API, allowing mem-
ory and time processing bottlenecks to be eliminated. A full re-implementation of Opticks for
the OptiX 7+ API is complete. Opticks now features many shared CPU/GPU headers and a
minimal intermediate geometry model that has enabled drastic code reduction and simplifica-
tion. The many small headers design together with mocking of a CUDA texture and random
number functions enables fine grained testing of almost all functionality on both GPU and
CPU.

Several groups from various experiments and the Geant4 Collaboration are evaluating
Opticks and an example of Opticks usage is now included within the Geant4 distribution.



Acknowledgements

The JUNO collaboration is acknowledged for the use of detector geometries and simulation
software. Dr. Tao Lin is acknowledged for presenting this work at conference at short no-
tice and for his assistance with the JUNO offline software. NVIDIA is acknowledged for
assistance with the OptiX 7+ API transition provided during a series of meetings throughout
2021 and a UK GPU hackathon in 2022. The LZ and LHCb physicists that suggested and
organized these meetings with NVIDIA are also acknowledged.

This work is supported by National Natural Science Foundation of China (NSFC) under
grant No. 12275293.

References

[1] Opticks Repository, https://bitbucket.org/simoncblyth/opticks/
[2] Opticks References, https://simoncblyth.bitbucket.io
[3] Opticks Group, https://groups.io/g/opticks
[4] S. Blyth, EPJ Web Conf. 251, 03009 (2021)
https://doi.org/10.1051/epjconf/202125103009

[5] S. Blyth, EPJ Web Conf. 245, 11003 (2020)
https://doi.org/10.1051/epjconf/202024511003

[6] S. Blyth, EPJ Web Conf. 214, 02027 (2019)
https://doi.org/10.1051/epjconf/201921402027

[7] Blyth Simon C 2017 J. Phys.: Conf. Ser. 898 042001
https://doi.org/10.1088/1742-6596/898/4/042001

[8] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Nucl.
Instrum. Methods. Phys. Res. A 506, 250 (2003)

[9] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, M. Asai et al., IEEE Trans
Nucl Sci, 53, 270 (2006)

[10] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso et al., Nucl. Instrum.
Methods. Phys. Res. A 835, 186 (2016)

[11] OptiX: a general purpose ray tracing engine
S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock et al., ACM Trans. Graph.:
Conf. Series 29, 66 (2010)

[12] OptiX introduction, https://developer.nvidia.com/optix
[13] OptiX API, https://raytracing-docs.nvidia.com/optix8/index.html
[14] OptiX 7 https://developer.nvidia.com/blog/how-to-get-started-with-optix-7/
[15] NVIDIA RTXTM Platform, https://developer.nvidia.com/rtx
[16] Neutrino physics with JUNO

F. An et al., J. Phys. G. 43, 030401 (2016)
[17] A new optical model for photomultiplier tube

Y. Wang, G. Cao, L. Wen, Y. Wang, Eur. Phys. J. C 82(4), 329 (2022).
https://doi.org/10.1140/epjc/s10052-022-10288-y

[18] Custom4 repository, https://github.com/simoncblyth/customgeant4
[19] Understanding Throughput Oriented Architectures

M. Garland, D.B. Kirk, Commun. ACM 53(11), 58 (2010)
[20] cuRAND, http://docs.nvidia.com/cuda/curand/index.html
[21] The NumPy array: a structure for efficient numerical computation

S. Van der Walt, S. Colbert, G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011)


