
Performance of Heterogeneous Algorithm Scheduling in
CMSSW

Andrea Bocci1, Christopher Jones2, and Matti J. Kortelainen2,∗

1CERN, Geneva, Switzerland
2Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract. The CMS experiment started to utilize Graphics Processing Units
(GPU) to accelerate the online reconstruction and event selection running on
its High Level Trigger (HLT) farm in the 2022 data taking period. The projec-
tions of the HLT farm to the High-Luminosity LHC foresee a significant use of
compute accelerators in the LHC Run 4 and onwards in order to keep the cost,
size, and power budget of the farm under control. This direction of leveraging
compute accelerators has synergies with the increasing use of HPC resources
in HEP computing, as HPC machines are employing more and more compute
accelerators that are predominantly GPUs today. In this work we review the
features developed for the CMS data processing framework, CMSSW, to sup-
port the effective utilization of both compute accelerators and many-core CPUs
within a highly concurrent task-based framework. We measure the impact of
various design choices for the scheduling of heterogeneous algorithms on the
event processing throughput, using the Run-3 HLT application as a realistic use
case.

1 Introduction

CMS started to utilize Graphics Processing Units (GPUs) to accelerate the online recon-
struction and event seleection in its High-Level Trigger (HLT) at the beginning of the LHC
Run 3 [1]. The projections for both online and offline computing for LHC Run 4 and beyond
foresee significant use of compute accelerators in addition of traditional CPUs. The Run 3
gives valuable development, maintenance, and operational experience on working with GPUs
for CMS for the long term.

In this work we review the features that were developed for the CMS data process-
ing framework, CMSSW [2–6], to effectively utilize GPUs and many-core CPUs simulta-
neously [7]. CMSSW implements multi-threading using the oneAPI Threading Building
Blocks [8] library, and utilizes tasks as the concurrent units of work. Users implement the
physics algorithms as modules within the framework, and the framework orchestrates the
concurrent execution of the modules following their data dependencies. The GPU APIs are
used directly from the modules. In practice so far the GPU API has meant NVIDIA CUDA,
but CMS is adopting Alpaka portability library [9–11] during Run 3 to ease the development
and maintenance of algorithms between CPU and NVIDIA GPUs [12]. Alpaka also should
give CMS a straightforward path to target GPUs from other vendors. Given that underneath

∗e-mail: matti@fnal.gov



Alpaka uses CUDA for NVIDIA GPUs, the findings of this work translate directly to Alpaka
as well.

This paper is organized as follows. The scheduling and synchronization strategies that
were tested are described in Section 2. The measurement methods and results are discussed
in Section 3. The conclusions are given in Section 4.

2 Scheduling and synchronization strategies

2.1 Synchronous, one CUDA stream

The simplest scheduling strategy is to queue all work, i.e. kernels and data copies, into one
CUDA stream. Usually this stream would be the so-called default CUDA stream, as that
is the simplest way to use the CUDA API. In this work an explicitly created CUDA stream
was used as a proxy, because that was easiest to achieve when starting from an application
supporting multiple CUDA streams. The host and device are synchronized with a call to
cudaStreamSynchronize() function that blocks the calling CPU worker thread until the
work on the device has finished.

The main downsides of this simple approach are all work being queued in one CUDA
stream, that doesn’t allow expressing the potantial concurrency from indenepdent work, and
the synchronization blocking the CPU worker thread, that could do other work while the
device is running the kernels.

2.2 Multiple CUDA streams

The simplest improvement to the pattern described in the previous subsection is to queue
independent work to different CUDA streams. In CMSSW each non-branching chain of
framework modules within an Event uses a separate CUDA stream, as depicted in Figure 1.
In addition, each event being processed concurrently has its own chains and therefore CUDA
streams. The CUDA stream management is implemented as a shared cache of CUDA streams
that are dynamically picked by the first CUDA-using modules in the sub-graphs. In case the
module dependency graph has a branch, i.e. a CUDA data product is consumed by many
modules, one of the consuming modules re-uses the same CUDA stream, and the others pick
a new CUDA stream from the cache. With this approach the available concurrency in the
application is maximally expressed to the CUDA runtime, that can then schedule the work as
it sees fit.

2.3 External worker

The next improvement is to replace the blocking synchronization with a callback-style solu-
tion, called External Worker in CMSSW. Traditionally the framework modules have had one
function called by the framework. In case of producers the function is called produce().
Modules that use the External Worker mechanism have instead two functions, acquire()
and produce(), depicted in Figure 2. The framework calls first the acquire() function,
that should launch all the asynchronous work. In case of CUDA-using modules, this means
queueing all the work into the CUDA stream provided by the framework. The acquire()
function is also given a reference-counted holder object that holds the oneTBB task that will
make the framework call the produce() function. The last action in the acquire() function
is to queue a callback function to the CUDA stream with cudaStreamAddCallback(), pass-
ing also the holder object to the callback function. CUDA runtime calls the callback function
after all the work queued in the CUDA stream in the acquire() function has finished, and



…

Figure 1. Example of chains of framework modules where 3 CUDA streams are being used in each
event. The circles represent the framework modules, and the arrows the data flow between modules.
The rectangles with rounded corners show the non-branching chains of modules, that each have their
own CUDA stream. The rectangles depict the events.

the callback function notifies the holder object all the work has completed. The holder object
then schedules the oneTBB task. The External Worker mechanism can propagate exceptions
from the asynchronous work to the rest of the framework.

In CUDA documentation [13] the cudaStreamAddCallback() is listed as a deprecated
function, but its replacement cudaLaunchHostFunc() does not report errors from the asyn-
chronous processing. In case of data processing errors it is imperative to catch them and
terminate the application early to avoid wasting computing slots by stalled jobs.

CPU

Accelerator

acquire() produce()other work

GPU, FPGA, 
etc

Ev
en

t d
at

a
Callback

Figure 2. Illustration of how the External Worker mechanism allows the CPU thread to do other work
while the accelerator, e.g. GPU, is doing work. The acquire() function queues data copies and kernels
to be run on the GPU, and also a callback so that the module’s work on the produce() function can
resume after the offloaded work has completed.

2.4 Use external worker only when really needed

In practice it turned out that the only reason to synchronize the host and the device is after
copying data from the device to the host. Often only the last CUDAmodule of a chain of
CUDA-using modules needs to copy data from the device to the host, and the earlier modules
only queue kernels or host-to-device data copies into the CUDA stream. Therefore having
every CUDA-using module to synchronize the host and the device implies unnecessary work,



and therefore avoiding these unnecessary synchronization calls should improve the data pro-
cessing throughput, as depicted in Figure 3, because the subsequent modules can queue their
work concurrently to the GPU already running the kernel(s) of the earlier module in the chain.

copy 
to host

copy 
to host

Figure 3. Illustration how limiting the use of the External Worker mechanism only for modules copying
data from device to host could improve the data processing throughput. The circles denote the modules,
with circle halves denoting the acquire() and produce() functions. The rectangles denote the kernels
queued by the modules, with the rightmost rectangle being the device-to-host data copy, that requires
the synchronization. Arrows denote the data flow.

The setup described up to this subsection, i.e. multiple CUDA streams combined with
asynchronous execution pattern with External Worker applied only for the modules copying
data from device to host memory, is the pattern that was used in production in CMS HLT in
2022 data taking.

2.5 Pool of waiting threads

We found out that the use of the callback functions with cudaStreamAddCallback(), or
cudaLaunchHostFunc(), leads to noticeable CPU usage in the case the CPU is only waiting
for the work on the GPU to finish. The 2022 HLT application has plenty of work to be done
on the CPU, and therefore, in principle, such additional CPU load from synchronization
could impact the performance of the CPU-side data processing, especially on a fully loaded
compute node. Therefore we explored alternative synchronization mechanisms in case we
could find a way to reduce the CPU usage.

We found that the following setup showed both lower CPU utilization in a GPU-bounded
test than the setup described in the previous subsection. We created a separate pool of
CPU threads that are mostly sleeping. At the end of the acquire() function, a CUDA
event is recorded, and passed to one of these waiting threads that is currently free, along
with the holder object. The waiting thread then calls the cudaEventSynchronize() func-
tion that blocks the thread. After the cudaEventSynchronize() function returns, the
holder object is notified from the work completion, and the waiting thread is marked as
free. The oneTBB worker thread that ran the acquire() function is free to do other
work. When the CUDA event is created with the cudaEventBlockingSync, the blocking
cudaEventSynchronize() function uses only very little CPU.

In addition, since cudaEventSynchronize() function reports errors from any asyn-
chronous execution via return code, this waiting thread pattern is a viable replacement for
the deprecated cudaStreamAddCallback(), that guarantees the application will always be
terminated, rather than becoming starved, in case of errors on the GPU.



3 Results and discussion

The performance of the various scheduling and synchronization strategies described in Sec-
tion 2 were compared using a setup mimicking an actual node in CMS HLT farm in 2022.
The measurements were carried out on a machine like the HLT production nodes, i.e. with
dual-socket AMD EPYC 7763 (Milan microarchitecture) CPUs and two NVIDIA Tesla T4
(Turing microarchitecture) GPUs. The node has 64 CPU cores per socket, with 2 hardware
threads per socket, giving total of 256 CPU hardware threads.

The number of CPU threads per process and number of processes per node were varied
such that their product was always equal to the 256 threads. The number of concurrent
events per process was set to 3/4 of the number of CPU threads per process to conserve
GPU memory. The HLT menu has enough intra-event parallelism that the event processing
throughput is the same as if the number of concurrent events would be equal to the number
of CPU threads. The measurements start at 16 CPU threads per process in order to fit all
test cases to the 16 GB of memory of the T4 GPU. The event processing throughput are
normalized to the throughput of the HLT menu run with CPU only.

The relative event processing throughput for the various test cases are shown in Figure 4.
Already the simplest case, synchronous with one CUDA stream (Section 2.1), gave 15-45 %
improvement compared to the CPU-only execution, depending on the number of CPU threads
per process. The benefit from the GPU execution decreases clearly when number of concur-
rent events and CPU threads per process is increased. It is a clear sign of a concurrency
bottleneck, likely lock contention, in the GPU-enabled application, although the exact cause
is not known at the time of writing.

16 32 64 128
Number of CPU threads / process

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Th
ro

ug
hp

ut
 re

la
tiv

e 
to

 C
PU

-o
nl

y 
m

en
u

1 stream, synchronous
Many streams, synchronous
Many streams, all modules ExternalWork
Many streams, minimal ExternalWork
Many streams, minimal ExternalWork, waiting threads

Figure 4. Event processing throughput of the tested scheduling and synchronization patterns relative
to the HLT menu ran only on CPU as a function of the number of CPU worker threads per process. In
each test case the number of events in flight was set to 3/4 of the number of CPU worker threads, and
the number of processes was set such that the total number of CPU worker threads corresponded the
total number of hardware threads of the node.

Enabling multiple CUDA streams (Section 2.2) gave a sizable, 7-20 % improve-
ment in the throughput. This finding indicates that majority of the kernels of the
application and the size of the data are not sufficient to fully utilize the T4 GPU,
and/or data being transferred in parallel with the kernels. All the scheduling options
cudaDeviceScheduleAuto, cudaDeviceScheduleSpin, cudaDeviceScheduleYield,
and cudaDeviceScheduleBlockingSync were tested and gave practically the same
throughput. Therefore the default option cudaDeviceScheduleAuto was used in Figure 4.



Replacing the explicit host-thread blocking synchronization from each framework module
with the asynchronous, external worker mechanism (Section 2.3) gave the same performance
as the blocking synchronization within 1.5 %. This observation means the application does
not have substantial CPU-only processing need compared to the duration of the chains of
kernels and data copies, to offset the cost of the additional complexity of the asynchronous
processing.

Removing the external worker -style synchronization from the modules that do not need
a synchronization (Section 2.4) had only minimal, 1 % improvement in the throughput, and
was visible only in the 16-CPU-thread case.

Replacing the cudaStreamAddCallback() with our own pool of waiting threads that
call cudaEventSynchronize() gave about 2 % higher throughput, that was also the highest
for all thread counts.

4 Conclusions

In this work we demonstrated the performance impact of the design decisions of the CUDA-
using module pattern in CMSSW, using the CMS High Level Trigger application with a
menu used in 2022 data taking as a realistic test bed. Already a simple single-stream ap-
proach with blocking synchronization gave significantly, (15–45 %, depending on the num-
ber of CPU threads per process) higher event processing throughput than a CPU-only menu.
Adding support for multiple CUDA streams improved the throughput by 7–20 %, whereas the
asynchronous execution features had only small, percent-level impact, and in some cases de-
creasing the throughput. Interestingly combining the asynchronous execution pattern with an
application-level pool of threads used only for blocking synchronization with CUDA events
gave the highest throughput on all tested thread counts over blocking synchronization in the
CPU worker thread and asynchronous execution with callback functions. We anticipate with
more computationally expensive algorithms being ported to GPUs the benefits of the asyn-
chronous processing would become more apparent.

Acknowledgements

This document was prepared by the CMS Collaboration using the resources of the Fermi National
Accelerator Laboratory (Fermilab), U.S. Department of Energy, Office of Science, HEP User Facility.
Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-
07CH11359.

References

[1] G. Parida, these proceedings
[2] C.D. Jones, M. Paterno, J. Kowalkowski, L. Sexton-Kennedy, W. Tanenbaum, The New

CMS Event Data Model and Framework, in Proceedings of International Conference
on Computing in High Energy and Nuclear Physics (CHEP06) (2006)

[3] C.D. Jones, E. Sexton-Kennedy, J. Phys.: Conf. Series 513, 022034 (2014)
[4] C.D. Jones, L. Contreras, P. Gartung, D. Hufnagel, L. Sexton-Kennedy, J. Phys.: Conf.

Series 664, 072026 (2015)
[5] C.D. Jones, J. Phys.: Conf. Series 898, 042008 (2017)
[6] C. Jones, P. Gartung, these proceedings
[7] A. Bocci, D. Dagenhart, V. Innocente, C. Jones, M. Kortelainen, F. Pantaleo, M. Rovere,

EPJ Web Conf. 245, 05009 (2020)



[8] oneAPI Threading Building Blocks, https://github.com/oneapi-src/oneTBB (2023), ac-
cessed: 2023-08-25

[9] B. Worpitz, Investigating performance portability of a highly scalable particle-in-cell
simulation code on various multi-core architectures (2015)

[10] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer, W.E. Nagel,
M. Bussmann, Alpaka - An Abstraction Library for Parallel Kernel Acceleration (IEEE
Computer Society, 2016), 1602.08477

[11] A. Matthes, R. Widera, E. Zenker, B. Worpitz, A. Huebl, M. Bussmann, Tuning and
optimization for a variety of many-core architectures without changing a single line of
implementation code using the Alpaka library (2017), 1706.10086

[12] A. Bocci, these proceedings
[13] NVIDIA, CUDA Toolkit Documentation 12.2 Update 1, accessed: 2023-08-23, https:

//docs.nvidia.com/cuda/

https://github.com/oneapi-src/oneTBB
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/

	Introduction
	Scheduling and synchronization strategies
	Synchronous, one CUDA stream
	Multiple CUDA streams
	External worker
	Use external worker only when really needed
	Pool of waiting threads

	Results and discussion
	Conclusions

