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Abstract. The computing and storage requirements of the energy and
intensity frontiers will grow significantly during the Run 4 & 5 and
the HL-LHC era. Similarly, in the intensity frontier, with larger trig-
ger readouts during supernovae explosions, the Deep Underground
Neutrino Experiment (DUNE) will have unique computing challenges
that could be addressed by the use of parallel and accelerated data-
processing capabilities. Most of the requirements of the energy and
intensity frontier experiments rely on increasing the role of high per-
formance computing (HPC) in the HEP community. In this presen-
tation, we will describe our ongoing efforts that are focused on using
HPC resources for the next generation HEP experiments. The HEP-
CCE (High Energy Physics-Center for Computational Excellence) IOS
(Input/Output and Storage) group has been developing approaches to
map HEP data to the HDF5 , an IO library optimized for the HPC
platforms to store the intermediate HEP data. The complex HEP data
products are serialized using ROOT to allow for experiment indepen-
dent general mapping approaches of the HEP data to the HDF5 format.
The mapping approaches can be optimized for high performance paral-
lel IO. Similarly, simpler data can be directly mapped into the HDF5,
which can also be suitable for offloading into the GPUs directly. We
will present our works on both complex and simple data model models.

1 Introduction
ROOT has been the main storage format for the HEP experiments with major HEP
experiments using it to store their data [1]. The ROOT framework not only provides
computational tools for HEP data analysis, but also provides effective IO operations in
the High Throughput Computing (HTC) environment. However, projections made by
ATLAS [2] and CMS [3] shows that the current computing infrastructure alone cannot
fulfill the requirements of these experiments. Similarly, with a large far detector (four
10 kT liquid argon modules), DUNE will have data rates, although fewer than that
of LHC experiments, in the order of few GBs (beam induced) to 100s of terabytes
(supernova readouts).
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Figure 1. Left: The Projected CPU consumption rate for the ATLAS experiment from
2023 to 2036. The area between the conservative(blue) and aggressive (red) dot lines shows
the range of CPU consumption based on conservating and aggressive R&D in the computing
infrastructure of the ATLAS experiment. The top (bottom) black line shows the impact of
10% (20%) increase in R&D budget annual on the CPU consumption. Figure is taken from
[2]. Right:Projection of peak performance of various DOE supercomputers (red line) is much
higher than the HEP CPU resource requirements (blue shade). Figure is taken from [4].

As shown in figure 1, the High Performance Computers (HPC) could help to fulfill
some of the computing needs of the HEP experiments. However, HPC systems use
parallel file system to enable efficient data storage and access for faster IO. High-level
libraries like HDF5 [5, 6], provide interface to use parallel file systems through their
parallel IO libraries which are optimized for the HPCs. To utilize the HPC resources,
HEP experiments need to utilize these high level libraries. Since ROOT provides all
major tools for computing and analysis of HEP data, experiments will depend upon
the ROOT framework for all their major computing needs. Our goal for this work is to
study HDF5 in ways that can complement the existing use of ROOT.

The HEP-CCE IOS group studied the scaling and performance of the HDF5 li-
braries as an intermediate storage for HEP applications that have a need of parallel
random access to the data in a single large file. Many HEP application frameworks are
either multi-threaded (art, CMSSW)[7] or use multiprocessing (Athena, ATLAS)[8].
While HDF5’s support for multi-threaded application is primitive, their support for
multiprocessing parallel IO is well studied and optimized, especially for HPC.

In this report, we will describe our use of HDF5 that can be used for any of the
experiments’ frameworks mentioned above. The HEP-CCE IOS group developed an
IO test framework to study the scaling of the IO performance with HDF5, ROOT, and
a few other custom data formats.

Parameters like file size, memory usage, compression, computing time etc were
taken into account to evaluate the scaling performance. Performance for both the
serial and parallel IO operations were evaluated in the case of the HDF5.

1.1 Description of the Test Framework

The test framework [9] is hosted by the HEP-CCE github repository. The framework
is experiment agnostic but supports reading data of major experiments like DUNE,
CMS and ATLAS for testing. Multi-threading operations are supported by tbb li-
braries. The main testing program is called threaded_io_test and the instructions
to build and run are given in the README file. The framework can either generate fake



data and write into the user specified format or take data from one of the supported
source data and write into the user specified output storage system. If the source
data is experiment specific, then the user needs to provide the appropriate ROOT ob-
ject serialization dictionaries to read and write the data. Parallel IO is only supported
for the HDF5 format with the HDF5 native collective IO and MPI calls to send and
receive data and message during the parallel operations.
Although the framework can support the IO testing with data written in ROOT, HDF5
and a CCE specific testing format called Packed Data Stream (PDS), this report will
primarily focus on the tests done with data saved in HDF5 format.
In the HEP framework paradigm, data associated with the same particle colli-
sion/interaction within the detector (or from simulation) is grouped in an Event.
Data within an Event is further grouped into Data Products. These Data Products
can include particles created from the interaction, energy deposition by the parti-
cles, location of interactions etc. These attributes help to reconstruct the physical
quantities like particle identification, momentum, energy etc. Since most of the HEP
experiments design their data to utilize resources provided by the ROOT framework,
their data have similar structure such that different Data Products and metadata
of each events are stored individually (usually as ROOT::TBranch). A Data Product
could be stored as fundamental types (int, chars, double, float, arrays etc)
or complicated C++ objects.

HEP frameworks are designed to schedule algorithms where each algorithm pro-
cesses data from an Event. The output of one algorithm may be used as the input to
another algorithm. Multi-threaded HEP frameworks typically allow concurrent pro-
cessing of algorithms where the algorithms are processing data from different Events.
The frameworks may also allow concurrent processing of different algorithms within
a single Event (still enforcing dependency requirements between algorithms). One
threading performance bottleneck in HEP frameworks is in the calls to the ROOT IO
APIs which must be done serially.

The CCE test framework mimics the multi-threaded behavior of the CMS software
framework. The test framework processes multiple Events concurrently (where the
number of concurrently processed events is set at configuration time). In addition,
all Data Products within the Events can be concurrently processed. Therefore it is
possible to have all Data Products for all available Events having C++ object serial-
ization being run concurrently. The framework also allows concurrent writing to ex-
ternal storage (if a format is used that supports it) else it has an efficient non-blocking
queuing system to serialize parts of an algorithm which can not be run concurrently.
The framework supports generating Events and writing them in multiple formats and
allows the extension of additional formats using C++ polymorphism. A new input
or output algorithm can be added to the framework by using C++ inheritance. The
framework currently supports reading and writing Events in these algorithms include
ones which can read and write ROOT and file formats with various multi-threading
optimizations. For parallel HDF5 IO, the test framework supports multi-processing
using MPI.

2 HDF5 Design approaches

Typically HEP data is organized in several levels of aggregations; runs, subruns (also
called a luminosity block), Events, and Data Products. An Event usually consists
of collections of Data Products that describes the various attributes of the data.
To keep our design approach independent of experiment specific Data Products and



assumptions, we use a simplified organization of Data Products. The Data Products
are serialized into a byte stream using ROOT before we map them to the HDF5 data
model. The framework supports the concurrent serialization of the objects until
writing them into HDF5 file which is only supported sequentially.

The HDF5 concepts that we used are HDF5::DataSets, HDF5::Groups, and
HDF5::Attributes. The data from a subrun is stored in one HDF5::Group. In-
formation about run, subrun, compression, etc are written as HDF5::Attributes.
Currently the framework supports two different ways of writing HEP data into HDF5
format.

2.1 Data Products based approach

In the Data Product based approach, each kind of Data Product in an Event is rep-
resented by two HDF5::DataSets. One HDF5::DataSet is used to store the serialized
byte stream of Data Product values and the other one is used to store the offset de-
scribing the event boundaries for a specific data product. Since most of the HEP data
is stored in ROOT with various data products of an event in different ROOT::TBranches,
HDF5::DataSet based approach is a one to one mapping of the data stored in ROOT and
HDF5 where each ROOT::TBrach object is mapped to corresponding HDF5::DataSet.
An additional HDF5::DataSet for each Data Product is created to store the size of
serialized Data Product values. There is one additional HDF5::DataSet to store the
Event identifiers(IDs). The size of the Event IDs HDF5::DataSetis equal to the num-
ber of Events. Hence, in this approach, n Data Products are mapped to 2n + 1
HDF5::DataSets. In HEP experimental data, usually an Event may have thousands
of data products. This approach requires creating thousands of HDF5::DataSet’s,
and large metadata to map the HEP data. Tests done with this approach did not
show good performance due to large number of write operations per HDF5::DataSets
across all HDF5::DataSets. However, the data stored with this method provides flex-
ibility and allows users to explore the data products individually without having to
read the entire Event. All the Events in a subrun are stored in a single HDF5::Group.
Information like run number, subrun number, compression levels, etc are stored as
HDF5::Attributes.

2.2 Event based approach

The second approach is optimized for the cases when an entire Event is accessed for
processing. As described in section 2.1, each Event is a collection of data products of
different types. Instead of creating one HDF5::DataSet per data product type, only
one HDF5::DataSet is used to store all the HDF5::DataSets of the Events. We used
HDF5::DataSet with type char to store the Data Products that have already been
serialized using ROOT. There is additional information needed to describe begin and
end of each Event, which is stored in another HDF5::DataSet with type uint32_t.
The final HDF5::DataSet is used to store event identifier. As a result, this approach
consists of three HDF5::DataSets; one to store events IDs, one to store Events and
one to store the location of each Event in the HDF5::DataSet that stores Events.
The information regarding different classes that represent different data products is
stored as HDF5::Attribute. The run number, subrun number, compression algo-
rithm and other information are all stored as attributes of the group that has all
the HDF5::DataSets stored. Additionally, the class name of each Data Products
are saved as HDF5::Attribute as well. Using one HDF5::DataSet for all the events



Figure 2. IO performance of the framework in various output modes. Figure shows
the total throughput when writing events into various formats. HDFEventOutputer and
HDFBatchEventOutputer are explained in section 2.2. PDSOutputer writes the data in packed
data stream format and ROOTEventOutputer in the ROOT format respectively.

significantly reduces the cost to create thousands of HDF5::DataSets and metadata
for those HDF5::DataSets, but adds thousands of HDF5::Attributes. We aggregate
Events into batches before writing to the file. The number of Events in a batch is de-
termined by how many Events can be processed and written with in memory limit on
a given node. Event batching reduces the number of times a HDF5::DataSet needs
to be extended and the number of write calls to the file system as compared with
calling these functions per Event-wise. Once a batch of Events is ready to be written
to an HDF5 file, we use the same sequence of HDF5 functions to do actual writes as
described in previous subsection. The writing process is simplified with Event based
and batching saves the IO cost, however, retrieving data products after they are read
as an Event blob is non-trivial.

Besides HDF5, the framework also supports output modules in various formats.
IO performance of these modules are shown in Figure 2. Figure 2 shows comparable
throughput obtained by various formats using the same thread count for processing
and same amount of data for writing sequentially.

3 Parallel HDF5 IO Design

In addition to using serial HDF5 and understanding its usability and performance in
the HEP application space, we also worked on designing and implementing output
modules with parallel HDF5. Parallel HDF5 allows multiple processes to write to one
file. It eliminates the need of concatenating thousands of files that are generated at
the end of processing via multiple independent grid nodes.

Parallel HDF5 uses MPI (Message Parsing Interface) -IO, a high performance
parallel IO library. MPI-IO supports independent IO and collective IO. Independent
IO means that each process does IO independently, while collective IO requires all
processes to participate when doing IO operations. The advantage of collective IO
is that it allows MPI-IO to do optimization to improve IO performance. We used
collective IO approach because different processes that need to process a set of Events



Figure 3. Schematic diagram of the Event Batch based IO design to write data into the
output HDF5 File. Here 4 MPI ranks (parallel processes) are writing 16 events into the
HDF5 file. Each MPI rank writes a total of 4 events with 2 events in each iteration. Hence
in 2 iterations, 4 MPI ranks write 16 events into the HDF5 file. Note that the events are
serialized before writing into the HDF5 file.

to be written to a file needs to synchronize with all the other processes to be able
to know where to write in a particular HDF5::DataSet. The parallel IO design uses
Event based approach with batching as described in 2.2.

In the parallel version, each MPI rank processes batches of events and collectively
writes one batch per iteration to a single output file. The Event distribution algorithm
assumes that the number of events to process, the number of MPI ranks, and the
batch size per rank are known. To simplify the distribution problem, the first step is
to round the number of events to the nearest number divisible by the number of MPI
ranks to process. Then divide the number of events per MPI rank into batches. This
approach guarantees that when using collective operations like MPI_Scan, all MPI
ranks are participating in each iteration of write. In each iteration of write, all of the
participating MPI ranks communicate the offsets and size of data to be written with
each other. We used MPI_Scan to calculate partial sum of the data size that each
rank has to write. Figure 3 shows an example; 4 MPI ranks are processing 16 events
in total, and the batch size is 2. Since the number of events is divisible by the number
of MPI ranks, no adjustment is needed. Then each rank determines independently
that it will be writing 2 batches of events. Each rank uses MPI_Scan to determine the
individual offsets to perform write operation. An MPI_AllReduce call followed by the
scan operation determines the maximum value, which is 6. The HDF5::DataSet is
extended by the maximum value plus the size of data to be written, which is 2 in this
example.

One of the main assumptions of this design is that it relies on the number of
events to be written is known in advance. We have also implemented an algorithm
without using number of events as a known factor. In this approach, writing happens
in multiple iterations, and is stopped when there are no events to process. In each
iteration, each MPI rank reads the same number of events. Each MPI rank then
takes a non-overlapping batch of events and processes it and writes it to the file. The
processing stops when there are no events to read and process. Our initial test results
show that this approach does not perform as well as our initial approach of known
events.

Our goal was to understand how well does the parallel HDF5 implementation
scales. We used Cori at NERSC to run most of the tests presented in this study; Cori
was a Cray XC40 with a peak performance of about 30 petaflops that retired on May
31, 2023.



We have already demonstrated that on a single node, we see comparable perfor-
mance among different output approaches including ROOT and HDF5. For the parallel
HDF5 tests, we use the configuration that gave the best performance with serial HDF5
writing. The number of threads per node was kept constant at 64 regardless of the
number of MPI ranks on a given node. The compression level was also set to 6 to
match what was used in the serial performance testing. The HDF5 chunk size for
writing was set to 10MB. The number of events that were aggregated in a batch in
each iteration before writing was set to 100 events. Our studies showed that using
burst buffers on Cori always performed better than using the parallel file system,
hence we have only included the tests with burst buffers in this report. The burst
buffer was based on Cray DataWrap and used flash or SSD technology to improve the
performance.

Figure 4. Scaling of Parallel HDF5 writing with multiple nodes on Cori (at NERSC).
Threads per node is kept at 64.

Table 1 shows the average breakdown of the IO operations while writing events
using the parallel HDF5 output module. According to the table, 54% of the IO calls
of the framework falls in the Others category. It includes operations like metadata
related operations, creating, opening and closing of required H5Objects like files,
attributes, datasets etc. Some of the operations in this categories like metadata
related operations could be optimized to furhter improve the performance.

Code stage Percentage of total run time
MPI_Scan 9

MPI_AllReduce 5
HDF5::Write 32

Others 54

Table 1. Break down of the IO operations to execute the Event Batch based data model
in the CORI machine. The "Others" category includes processes like creating input file,

write headers, extension of data size etc.



4 Conclusion
We have developed a test framework that enables us not only to explore HDF5 IO
designs in a generalized HEP computing framework but also allows to improve IO
design for the HEP experiments in the HPC environment. The framework provides
both serial and parallel IO testing of HEP Events in various input and output formats.
Our studies shows that HEP experiments can leverage the IO libraries of high level
libraries like HDF5 for parallel IO in the HPC environment. We have developed and
tested multiple ways of mapping the HEP data to HDF5, access methods of the data
and tuning of the HDF5 parameters for better parallel IO access.

5 Future Plans
In the first iteration of HEP-CCE, we have shown that using ROOT as a serializa-
tion tool, already serialized HEP data can be stored in HPC friendly format using
the parallel libraries. However, the serialized data cannot be offloaded into current
generation of HPCs which utilize GPGPUs to accelerate their IO. Data models need
different organization to make them GPU friendly. Hence in the second iteration of
the CCE, we will look into the study and design of the data models that can not only
be stored in the HPC friendly format, but also can be offloaded into both host and
device directly. This study will also complement another proposed study which aims
to develop data model that will be friendly to ROOT::RNTuple, which is the latest IO
subsystem provided for HEP experiments.
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