Integrating LHCb Offline Workflows on Supercomputers

State of Practice

Alexandre F. Boyer'"*, Federico Stagni'’, Christophe Haen', Christopher Burr", Viadimir
Romanovskiy?:, and Concezio Bozzi*

'CERN, EP Department, Geneva, Switzerland
2NRC Kurchatov Institute, IHEP, Protvino, Russia
3INFN Sezione di Ferrara, Ferrara, Italy

Abstract. To better understand experimental conditions and performances of
its experiment, the LHCb collaboration executes tens of thousands of loosely-
coupled and CPU-intensive Monte Carlo simulation workflows per hour. To
meet the increasing LHC computing needs, funding agencies encourage the col-
laboration to exploit High-Performance Computing resources, and more specif-
ically supercomputers, which offer a significant additional amount of comput-
ing resources but also come with higher integration challenges. This state-of-
practice paper outlines years of integration of LHCb simulation workflows on
several supercomputers. The main contributions of this paper are: (i) an exten-
sive description of the gap to address to run High-Energy Physics Monte Carlo
simulation workflows on supercomputers; (ii) various methods and proposals to
maximize the use of allocated CPU resources; (iii) a comprehensive analysis of
LHCDb production workflows running on diverse supercomputers.

1 Introduction

The High Luminosity Large Hadron Collider (HL-LHC) is an upgraded version of the LHC
designed to achieve instantaneous luminosities approximately ten times greater than the orig-
inal values of the LHC, improving the potential for discoveries after 2029 [1]. The upgrade
will enable the LHCb experiment to enlarge its data sample by an order of magnitude and
the physicists to observe rare processes. Running Monte Carlo simulations is essential for
preparing such an upgrade within the LHCb collaboration. These simulations aim to under-
stand the experimental conditions and performance of the experiment, as well as support the
analysis of past, present, and future datasets.

The simulation of proton-proton collisions, as well as the hadronization and decay of the
resulting particles, are controlled by Gauss [2, 3], a CPU-intensive application. In 2022, MC
simulations consumed more than 90% of the CPU hours available to the collaboration, and a
larger number of complex simulations are expected with the HL-LHC.

The LHCb collaboration focuses on two strategies to cope with the lack of pledged com-
puting resources: (i) reducing the memory and CPU footprint of Gauss and adapting it to
further computing environments; (ii) exploiting opportunistic computing resources, and es-
pecially supercomputers, by improving the LHCb Workload Management System (WMS).

*e-mail: alexandre.boyer@cern.ch

In this paper, we are going to describe the latter approach and mainly the integration of a MC
simulation application on supercomputers, which offer a significant amount of computing
resources, but present higher integration challenges.

The LHCD collaboration has exploited supercomputers for a few years and has relied on
wealth of literature about similar experiments. To the best of our knowledge, the current
literature focuses on specific cases and does not provide abstract models that would help
communities conducting analogous operations in different contexts, implying other WMS,
workloads, and/or constrained supercomputers. The objective of this paper is to provide a
generic plan relying on different concrete experiments to guide similar organizations in this
process.

We first describe LHCb requirements and known constraints related to supercomputers
(Section 2). We then introduce the outcome of our literature review on the integration of
some LHC workload in supercomputers (Section 3). We also describe solutions that we im-
plemented within the LHCb WMS to extend its capabilities (Section 3). Finally, we present
several use cases that consists in applying the solutions we developed to different supercom-
puters (Section 4).

2 Analysis of Constraints
2.1 Software Architecture

The software architecture challenge refers to the ability of an application to efficiently use
the computing power of a given environment. Nowadays supercomputers typically include
multi-core and many-core x86 CPUs, although non-x86 and RISC CPUs are becoming more
common. Most integrate accelerators such as GPUs. Besides, supercomputers are primarily
designed for parallel processing with inter-process communication and fast inter-node con-
nectivity. They tend to favor a small number of multi-node allocations over many single-core
allocations. Many-core nodes generally cannot support one instance of Gauss per core due to
the memory footprint of the application.

Gauss, on the other hand, is currently a CPU-intensive single-process (SP), single-
threaded (ST) application, with an average memory footprint of 1.4 GB. It takes a simple
configuration file as input and typically produces outputs of a few MB-GB. It supports only
CISC x86 architectures and CERN CentOS compatible environments.

Given the above definition, the application would not be adapted for supercomputers,
but there are many ongoing efforts to optimize and extend the application. The developers
are actively working on a multi-threaded version of Gauss called Gaussino [4] to reduce the
memory footprint of the application and improve its efficiency. In parallel, they are also
attempting to prepare Gauss for RISC architectures such as ARM.

2.2 Distributed Computing

The distributed computing challenge refers to the ability of the WMS to provide allocations
and compatible environments including all the dependencies - data and software - for the
application to run successfully. This can be a complex task as supercomputers can be very
different. Supercomputers may embed different GNU/Linux distributions and impose their
own security models on users. For instance, administrators may prohibit outbound connec-
tions from Worker Nodes (WNs) and/or require users to connect to a Virtual Private Network
(VPN) to access computing resources. Similarly, supercomputer administrators generally
prevent users from mounting file systems such as CVMFS [5] on the WNs, a distributed
file system that allows LHC experiments to access their software from any distributed grid

site. The uniqueness of supercomputing resources demands specific solutions for each one,
generally expensive in terms of development and operational efforts.

In the context of LHCb, the WMS refers to the DIRAC Workload Management System
[6]. DIRAC can interact with different types of Computing Elements (CEs) and Local Re-
source Management System - via ssh - to supply grid resources with Pilot-Jobs [7]. The
developers chose to rely on the Pilot-Job paradigm, which is much more efficient than push-
ing jobs to distributed computing resources, but requires ubiquitous external connectivity.
DIRAC was initially designed to request single-core allocations but has recently been en-
hanced to support multi-core allocations too. Pilot-Jobs provide a controlled and compatible
environment by encapsulating tasks in Singularity/Apptainer [8] containers whenever possi-
ble. Pilot-Jobs can also rely on CVMFS to provide tasks with their sotware dependencies.

The current distributed computing strategy of LHCb consists in (i) exploiting x86 CPU
supercomputer partitions; (ii) collaborating with the local system administrators and perfor-
mance experts, which has proven to be mutually beneficial and has helped to address many
specific issues; (iii) adapting the DIRAC WMS to constrained environments. The latter point
is essential given the substantial amount of computing power that supercomputers can provide
and the growing computing needs to process future LHC data.

3 Software blocks

We analyzed several use cases involving teams integrating their HTC workloads on super-
computers. Most of the solutions required immediate development without an analytical
understanding of the underlying abstractions. We developed an abstract model in the form of
an activity diagram, shown in Figure 1 and described below. It remains relatively tied to the
LHC experiments and does not address data movement problems but could serve as a basis
for further projects.

The model is designed to question the reader about the constraints of a given supercom-
puter. The following pathways allow communities to test the capabilities of the system and
build the necessary components to overcome the obstacles that might hinder the integration
of their workloads. Overall, the solutions on the left side of Figure 1 are more generic, but
less efficient, than those on the right side.

3.1 Outbound connectivity

The connectivity policy implies a choice of provisioning model. Getting external connec-
tivity from the WNs allows them to contact external services, thus employing the Pilot-Job
paradigm.

Having partial connectivity - WNs only have access to the edge nodes that can contact
external services - is similar, but requires a gateway service. The role of a gateway service
is to redirect network traffic from Pilot-Jobs and tasks running on WNs to external services.
A gateway service consists of a client installed within the allocation on a WN, and a service
hosted on an edge node [9]. The service works provided that system administrators allow
WMS administrators to install their applications on an edge node, which is not always the
case. Otherwise, jobs have to be pushed to the supercomputer.

In this case, the WMS needs to embed or communicate with a Job Manager, which is
installed outside of the machine and works as a Pilot-Job. A Job Manager pre- and post-
processes jobs - including interactions with external services -, and solely submits the tasks
to a remote middleware. It also monitors jobs and controls the throughput. The best known
example is the ARC Control Tower (aCT), which aims to provide a generic interface to the
WMS [10].

Push jobs

Is CVMFS
mounted?

Extract and export
CVMFS content*

Multi-
Core/Node
allocations,

Use inter-node

External
onnectivity

Install a Gateway
service on the edge
node**

Install a
PilotManager on the
edge node**

Is CVMFS
mounted?

Mount CVMFS as an
unprivileged user*

Multi-Node
allocations?,

Use inter-node

communication communication
libraries within libraries within
allocations allocations

*Container technology

Container
Technology?

Y
Stop:
LRMS Stop: LRMS cannot continue
accessible? cannot continue accessible?,
**EdgeNode

Restart from
"ExternalConnectivity?
No”

Use MP/MT libraries
within allocations

Multi-Core
allocations?,

Figure 1. Activity diagram to better understand capabilities of a constrained cluster and existing solu-
tions to cope with integration obstacles.

To address external connectivity issues while preserving the current architecture, we in-
troduced two components within DIRAC: PushJobAgent, which fetches jobs from a DIRAC
server, and RemoteRunner, which submits and monitors the workload on the supercomputer.
The first response of the activity diagram leads to significant changes in the approach to adopt
and leads to two distinct paths in the diagram.

3.2 LRMS access

It is generally more convenient to interact with the LRMS from an edge node rather than
from outside a supercomputer, especially if it is protected by a VPN. WMS administrators
can install a Pilot Manager directly on an edge node to locally submit Pilot-Jobs to the LRMS.
The service works as long as the system administrators permit WMS administrators to install
their applications on an edge node, although this permission is not always granted. Moreover,
if there is no outbound connectivity within the system, then the solution is simply not viable.

The DIRAC Pilot Manager, called Sife Director, could run on an edge node if allowed,
and provided a host certificate to interact with external DIRAC services.

3.3 Software dependencies through CVMFS

Boyer et al. provide an overview of the existing approaches to using CVMEFES from unprivi-
leged/unconnected environments [11]. The best known one is cvmfsexec [12], which allows
the file system to be mounted as an unprivileged user. The program requires a specific en-
vironment to work correctly: (i) external connectivity; (ii) the fusermount library or unprivi-
leged namespace mount points or a setuid installation of Singularity/Apptainer. Blomer et al.
provide further details on the package [13].

Communities using supercomputers that do not provide outbound connectivity cannot
directly benefit from cvmfsexec: the package still needs to fetch updated data via HTTP,
which is not available in this context. Teuber and the CVMFS developers conceived
cvmfs_shrinkwrap in response [14]. cvmfs_shrinkwrap can extract specific CVMFS files and
directories based on specification files, deduplicate them, and make them easily exportable
in various formats such as squashfs or tarball. Boyer et al. developed an open source and
generic command-line interface, called subcvmfs-builder, around cvmfs_shrinkwrap to assist
WMS administrators in this process [11]. It allows the dependencies of a given application
to be identified, extracted, tested and deployed on constrained computing resources.

To deliver Gauss dependencies on supercomputers without external connectivity, we de-
veloped subcvmyfs-builder-pipeline, a GitLab CI that relies on subcvmfs-builder to produce
a subset of CVMFS. The CI pipeline runs every day and typically takes about 1 hour and
30 minutes. The resulting subset of CVMFS represents 0.24% of the LHCb-CVMFS repos-
itory and occupies around 6 GB: 3.2 GB of space for the dependencies and 2.8 GB for the
cvmfs_shrinkwrap metadata. This is sufficient to run most of the current Gauss workloads.

3.4 Allocations

Supercomputers embed many-core nodes and typically propose a limited number of allo-
cations. This approach encourages users to exploit multiple cores and even multiple nodes
within the same allocation. To take advantage of multiple nodes in parallel, teams use inter-
node communication libraries such as MPI and OpenMP to develop wrappers around pilots
and/or jobs [15]. In the case where WNs do not have access to the external network, wrappers
embed a fixed number of jobs, which means that they should be of similar duration to avoid
wasting resources. Otherwise, wrappers can embed Pilot-Jobs and better control the allocated
space.

DIRAC currently relies on a specific solution based on srun, a Slurm command that
allows running MPI pilots involving many nodes. DIRAC requests a variable number of
nodes - between min nodes and max nodes and submits a single pilot that is copied and
executed in parallel by srun on each allocated node. They all run under the same pilot
identifier and status.

To leverage a maximum number of cores in a node, we also designed a flexible and
generic fat-node partitioning mechanism to simultaneously run independent jobs from the
same Pilot-Job [16]. Once installed on the node, the Pilot-Job checks the number of pro-
cessors available and sequentially fetches jobs accordingly to execute them in parallel. The
fat-node partitioning mechanism supports complex descriptions of jobs and resources. It
allows users to submit single-core and multi-core jobs.

4 Use Cases
4.1 Piz Daint

Piz Daint, ranked 28" in the June 2023 Top500 list [17], has been installed at the Swiss
National Supercomputing Center (CSCS) in 2012 and updated three times since then. It
consists of 387,872 nodes with Intel Xeon E5-2690v3 12-cores at 2.6GHz chips.

We are able to closely collaborate with the administrators of the supercomputers, who
provide us with pledged computing resources and allow us to address the issues that are com-
monly found on such infrastructures. We can request single-core allocations by submitting
pilots via an ARC CE. CVMES is mounted on the WNs that have external connectivity.

4.2 Marconi A-2 and Marconi 100

Marconi Intel Xeon Phi [18] is a supercomputer at CINECA, available to the Italian and
European research community. Ranked number 22" in the June 2020 Top500 [17], Mar-
coni Intel Xeon Phi provides its compute capacity through several independent partitions.
The Marconi-A2 partition consisted of nodes equipped with one Xeon Phi 7250 (KNL) at
1.4 GHz, with 96 GB of RAM. System administrators installed CVMFS and allowed jobs
to interact with certain external services from CERN. Approximately 300MB of RAM was
available per core when all 272 logical cores were in use, much less than the 1.4 GB required
by Gauss.

We submitted pilots via an HTCondor CE and experimented with the fat-node partitioning
mechanism to request one fat node per allocation. Each pilot was able to fetch and run one
job per physical core, resulting in 68 jobs per allocation [16].

In January 2020, the A2 partition was turned off to increase the compute capacity of the
center. KNLs were replaced with nodes equipped with IBM Power9 CPUs and NVIDIA
Volta V100 GPUs in a new Marconil00 supercomputer, ranked 26" in June 2023. We have
the possibility to take advantage of the GPUs, but we do not currently have the workload to
run on such WNs.

4.3 Santos Dumont

The Laboratério Nacional de Computacgdo Cientifica (LNCC), in Brazil, provides opportunis-
tic allocations to the LHCb collaboration. The Santos Dumont (SDumont) supercomputer,
ranked 424™ of the Top500 in June 2022, was the first Petascale machine in Brazil, with
a total of 36,472 CPU cores, distributed across 1,134 compute nodes, mainly composed of
CPUs ([19]). Local system administrators manage computational resources and their use with
Slurm. They enable outbound connections from the WNs.

Thanks to a close collaboration with LNCC, system administrators installed and mounted
CVMES on the nodes, and created an SSH bridge from an LHCbDIRAC host to an edge
node of the supercomputer so that LHCb administrators and developers do not need to deal
with the presence of a VPN. We have leveraged Pilot-Jobs, the fat-node partitioning and the

srun tool to exploit the available resources. The number of jobs processed per hour has
varies considerably over time but we request and use multiple nodes per allocation and any
available logical cores within the nodes.

4.4 Mare Nostrum 4

Managed by the Barcelona Supercomputing Center (BSC), Mare Nostrum is the most power-
ful and emblematic supercomputer in Spain [20]. Mare Nostrum was ranked 98" in the June
2023 Top500 list [17]. The general purpose partition of Mare Nostrum comprises 153,216
cores distributed across 3,456 computational nodes. Each node in the general-purpose block
is equipped with two Intel Xeon Platinum 8160 24-cores at 2.1 GHz chips, and at least 2 GB
of RAM per core: this configuration meets the requirements of Gauss. Nodes and users share
access to a shared file system, where they have access to 5 TB of storage. The WNs also host
a non-CERN-compliant version of Linux: SUSE Linux Entreprise Server 12. Administrators
manage the nodes using the Slurm LRMS.

Mare Nostrum is very restrictive. By default, CVMFS is not mounted on the nodes and
administrators would not allow it. Worker nodes and edge nodes have no external connectiv-
ity and no service can be installed on the edge nodes. Therefore, it is impossible to deploy
Gauss tasks to WNs using Pilot-Jobs.

To provide tasks with Gauss dependencies and a reproducible environment, we first cre-
ated a CernVM Singularity/Apptainer container and moved it to the shared file system of
Mare Nostrum. Then, we set up the LHCb subcvmfs-builder-pipeline to push the latest Gauss
dependencies to the shared file system of the supercomputer. To facilitate the management
of the workloads on Mare Nostrum, a team from the Port d’Informacié Cientifica (PIC) in-
stalled an ARC instance on their infrastructure. We installed and configured a PushJobAgent
to push Gauss tasks to Mare Nostrum via the ARC instance hosted by PIC. We configured
the PushJobAgent instance to initially handle 200 single-core jobs in parallel. The current
approach is a simple solution that minimizes code changes. To handle more jobs, we would
need to redesign the structure of the DIRAC WMS workflows embedding Gauss.

5 Conclusion

This work promotes and relies on the research efforts of the LHC experiments which continue
to develop tools to exploit supercomputers. The sections are relatively bound to LHCb and
MC simulations but they could be transferred to any other similar projects depending on
distributed, shared and, especially, constrained computing resources .

We specified our requirements and abilities for dealing with constrained environments
(Section 2). Next, we presented a generic plan and some implementations to help commu-
nities integrate their applications on supercomputers (Section 3). We emphasized solutions
to support resources without external connectivity: (i) PushJobAgent, a DIRAC agent to
perform pre- and post- operations from LHCb servers and only submit the tasks to supercom-
puters (Section 3); (ii) subcvmfs-builder-pipeline, a generic CI pipeline to automatically build
and deploy subset of CVMFS (Section 3). We also described abilities of DIRAC to manage
many-core allocations in supercomputers with external connectivity (Section 3). Finally, we
presented some supercomputers and followed the logic of the plan to integrate Gauss tasks on
their computing resources (Section 4). It is worth noting that the examples we have presented
are very different from each other in their architectures and policies.

While the used amount of computing power is still significantly lower with respect to the
current pledged resources that we can exploit, it lays the foundations for further and larger
upcoming allocations of computing resources.

References

[1] G. Apollinari, I. Béjar Alonso, O. Briining, M. Lamont, L. Rossi, High-Luminosity
Large Hadron Collider (HL-LHC) : Preliminary Design Report, CERN Yellow Reports:
Monographs (CERN, Geneva, 2015), http://cds.cern.ch/record/2116337

[2] M. Clemencic, G. Corti, S. Easo, C.R. Jones, S. Miglioranzi, M. Pappagallo, P.R. and,
Journal of Physics: Conference Series 331, 032023 (2011)

[3] L. Belyaev, T. Brambach, N.H. Brook, N. Gauvin, G. Corti, K. Harrison, P.F. Harrison,
J. He, C.R. Jones, M. Lieng et al., Journal of Physics: Conference Series 331, 032047
(2011)

[4] B.G. Siddi, D. Miiller, Gaussino - a Gaudi-Based Core Simulation Framework, in 2019
IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE,
Manchester, United Kingdom, 2019), p. 1-4, ISSN 2577-0829

[5] P. Buncic, C.A. Sanchez, J. Blomer, L. Franco, A. Harutyunian, P. Mato, Y. Yao, Journal
of Physics: Conference Series 219, 042003 (2010)

[6] A. Tsaregorodtsev, F. Stagni, P. Charpentier, A. Sailer, M.U. Garcia, K.D. Ciba,
C. Haen, C. Burr, A. Lytovchenko, R. Graciani et al., Diracgrid/dirac: v8.0.27 (2023),
https://doi.org/10.5281/zenodo. 8249063

[7]1 M. Turilli, M. Santcroos, S. Jha, ACM Comput. Surv. 51, 43:1-43:32 (2018)

[8] L. Foundation, Apptainer, the container system for secure high-performance computing
(2022), https://apptainer.org/

[9] Tovar, Benjamin, Bockelman, Brian, Hildreth, Michael, Lannon, Kevin, Thain, Dou-
glas, EPJ Web Conf. 251, 02032 (2021)

[10] J. Nilsen, D. Cameron, A. Filip¢i¢, Journal of Physics: Conference Series 664, 062042
(2015)

[11] A.E Boyer, C. Haen, F. Stagni, D.R.C. Hill, A Subset of the CERN Virtual Machine File
System: Fast Delivering of Complex Software Stacks for Supercomputing Resources,
in High Performance Computing, edited by A.L. Varbanescu, A. Bhatele, P. Luszczek,
B. Marc (Springer International Publishing, Cham, 2022), pp. 354-371

[12] CVMEFS, cvmfsexec (2022), https://github.com/cvmfs/cvmfsexec

[13] Blomer, Jakob, Dykstra, Dave, Ganis, Gerardo, Mosciatti, Simone, Priessnitz, Jan, EPJ
Web Conf. 245, 07012 (2020)

[14] S. Teuber, Efficient unpacking of required software from CERNVM-FS (2019), https:
//doi.org/10.5281/zenodo.2574462

[15] K. De, A. Klimentov, D. Oleynik, S. Panitkin, A. Petrosyan, J. Schovancova, A. Vania-
chine, T. Wenaus, A. Collaboration et al., Integration of PanDA workload management
system with Titan supercomputer at OLCF, in Journal of Physics: Conference Series
(IOP Publishing, 2015), Vol. 664, p. 092020

[16] F. Stagni, A. Valassi, V. Romanovskiy, EPJ Web of Conferences 245, 09002 (2020)

[17] Top500, Top500 the list (2022), https://www.top500.0rg/

[18] Cineca, Cineca hpc (2023), https://www.hpc.cineca.it/hardware/marconi

[19] LNCC, Sdumont (2021), https://sdumont.lncc.br/

[20] D. Vicente, J. Bartolome, BSC-CNS Research and Supercomputing Resources, in High
Performance Computing on Vector Systems 2009, edited by M. Resch, S. Roller,
K. Benkert, M. Galle, W. Bez, H. Kobayashi (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010), pp. 23-30, ISBN 978-3-642-03913-3

