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Abstract. Differentiable Programming could open even more doors in HEP 

analysis and computing to Artificial Intelligence/Machine Learning. Current 

common uses of AI/ML in HEP are deep learning networks – providing us 

with sophisticated ways of separating signal from background, classifying 

physics, etc. This is only one part of a full analysis – normally skims are 

made to reduce dataset sizes by applying selection cuts, further selection cuts 

are applied, perhaps new quantities calculated, and all of that is fed to a deep 

learning network. Only the deep learning network stage is optimized using 

the AI/ML gradient decent technique. Differentiable programming offers us 

a way to optimize the full chain, including selection cuts that occur during 

skimming. This contribution investigates applying selection cuts in front of 

a simple neural network using differentiable programming techniques to 

optimize the complete chain on toy data. There are several well-known 

problems that must be solved – e.g., selection cuts are not differentiable, and 

the interaction of a selection cut and a network during training is not well 

understood. This investigation was motived by trying to automate reduced 

dataset skims and sizes during analysis – HL-LHC analyses have potentially 

multi-TB dataset sizes and an automated way of reducing those dataset sizes 

and understanding the trade-offs would help the analyser make a judgement 

between time, resource usages, and physics accuracy. This contribution 

explores the various techniques to apply a selection cut that are compatible 

with differentiable programming and how to work around issues when it is 

bolted onto a neural network. Code is available. 

1 Introduction 

Physicists have been writing code to analyse and mine the data from their particle physics 

experiments since the 1970’s, at least. The conceptual operations used then – is this jet greater 

than 1500 MeV – look at lot like SQL operations of today (SQL was developed in the 1970’s). 

What we do today looks remarkably similar. However, analysis started to change with the 

LeCun’s seminal paper in 1989 demonstrating the possibility of large neural networks to do 

signal/background discrimination [1]. Machine Learning has become a part of a scientist’s 

toolbox and been creeping further and further into the analysis pipeline. 

Selection cuts remain an important part of the analysis pipeline, and likely will remain, 

for several reasons. First, unlike a Machine Learning (ML) based selection cut, it is 
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immediately understandable what is happening. Certainly, the physics impact of a selection 

cut is more apparent than a ML based selection. This lack of interpretability is one of the 

weaknesses of ML. In fact, ML has gotten so powerful it can encode Lorentz Boosts and 4-

vector addition and other basic physics operations – the community now understands how to 

build these operations into their ML networks [2]. 

For this proceeding, consider Machine Learning as consisting of two components. First 

is the complex function that is to be fit to the data. During inference this function, with its 

many fit parameters, can look at the data and determine if it is looking at signal or 

background. Second is the training process. This is finding the best set of parameters so the 

function will be best at discriminating between signal and background. This is usually called 

training the network and uses a technique like gradient-descent. To put it in physics parlance, 

this is just a function fit, albeit a function with 100’s of thousands of parameters (or more – 

GPT-4 has more than a trillion parameters [3]). Gradient-descent refers to the act of 

determining the gradient of the function we are fitting, and then moving towards a minimum 

by adjusting each of those 100’s of thousands of parameters. 

However, the analysis of particle physics data is challenging due to the complexity and 

uncertainty of the physical processes involved, as well as the limitations of the computational 

resources available. 

Generically, differentiable programming is a paradigm that allows programmers to write 

code that can be automatically differentiated and, thus, optimized by a compiler or an 

interpreter or other tool. Differentiable programming is a superset of ML. One of the potential 

applications of differentiable programming is physics analysis. Differentiable programming 

can offer a novel way to address these challenges, by allowing physicists to express their 

models and hypotheses in a differentiable form, and then use gradient-based optimization to 

fit them to the data and infer the underlying parameters. This can also enable physicists to 

incorporate prior knowledge and domain-specific constraints into their models, as well as to 

explore new possibilities and scenarios that are not easily accessible by traditional methods. 

Casting back to the analysis example above, the differentiable function now includes not 

just the ML network parts, but also the selection cuts, and any physics we might want to add. 

For example, performing a window selection cut on the mass of a reconstructed Z: 80 𝐺𝑒𝑉 <
𝑍𝑒+𝑒− < 100 𝐺𝑒𝑉. The 80 and the 100 can now become parameters for optimization – 

optimized with the final physics measurement in mind, not just the local goal of sampling a 

clean selection of Z’s. Once the final optimization is done, one can come back and look at 

what numbers were chosen by the optimization process. Perhaps it was 88 and 93 or maybe 

70 and 110 – both of which give one physics information about how downstream the Z is 

being used, how clean a sample you needed, how well you could deal with radiation, etc. To 

calculate the gradient of this, the gradient of the four-vector addition, mass calculation, and 

the low and high window cuts must be differentiable. 

There are also practical uses. The idea for this project was stumbled upon when looking 

at how Analysis Facilities (AF) and the very large HL-LHC datasets are expected to interact. 

Fig 1 shows a possible AF design, with the AF located near a large storage element capable 

of holding a complete HL-LHC dataset. The two components are connected via a high-

bandwidth network. However, by performing local thinning and skimming at the storage 

element, a dramatic reduction on networking requirements can be achieved. This will be 

particularly important if the storage element or facility is not collocated with the AF. These 

so-called preselection cuts that can be applied in the Simple Query Processor (see Fig 1) 

must be arrived at – with differentiable programming we have the option of determining them 

automatically. 



 
Fig 1. A possible design of an Analysis Facility (AF) and its interactions with the very large datasets 

from the HL-LHC experiments. The user will want to preselect some of the very large datasets that are 

then used in their downstream analysis (represented by a NN (Neural Network) here). Minimizing the 

network bandwidth between the storage elements and the AF will improve overall efficiency. 

 

This short proceedings is structured in two sections. First a section outlining the tools and 

code used to explore this, along with some of the issues. The next section describes some of 

the problems faced implementing this and workaround and solutions. 

 

2 The Toy Analysis Model 

A very simple toy model was set up to explore the 

problem space. The toy data are in a simple 2D space (call 

the axes 𝑥 and 𝑦). The background is a 2D gaussian 

centred at (0,0) with (𝜎𝑥, 𝜎𝑦) = (9,9) and no correlation 

between the two gaussians. The signal is also a 2D 

gaussian distribution, centred at (1.5, 2.0) with widths 

(0.5, 0.5) and a 20% correlation between the two axes. 

The logical flow of the analysis consists of an 

individual cut on 𝑥 and 𝑦, followed by a dense Neural 

Network (NN). The dense NN is implemented in the 

Haiku library and has 5 layers 

(hk.nets.MLP(output_sizes= [2, 15,30, 15, 
1])). The last single output layer is, of course, the weight 

and is meant to tell the difference between signal and 

background. It was verified that this network could 

discriminate between signal and background on its own – 

cutting a very nice hole in the middle of the background 

distribution to allow signal through. 

Training can proceed stochastically or via weights. As 

described below the weight method was chosen. As 

shown in Fig 2, the weights representing each cut on 𝑥 

and 𝑦 are multiplied by the weight from the NN. In theory 

if the weights of the selection cuts are zero, gradient 

descent should not try to alter the weights in the NN 

during the training process. 

Fig 2. To apply gradient-decent 

optimization the cuts and dense NN 

in the toy analysis must be combined 

into a function. This work uses 

weights to represent the selection 

cuts, and the NN produces a weight 

by design. The three weights are 

multiplied together, and the result of 

that is the output of the overall 

function. 



2.1 Tools Used 

All code is available on GitHub [4]. All work was performed with Jupyter notebooks as the 

primary user interface [5]. The following software packages were used: 

 

1. JAX – This is a python package for differentiable programming and building deep 

NN’s developed and maintained by Google’s DeepMind AI (Artificial Intelligence) 

research group. It combines Autograd and XLA to enable high-performance 

machine learning research. Autograd is a library that can automatically differentiate 

native Python and NumPy functions, even through complex control flow and higher-

order derivatives. XLA is a compiler that can optimize and run NumPy programs 

on GPUs and TPUs. JAX provides a simple and flexible API based on NumPy, as 

well as composable function transformations such as grad, jit, vmap, and pmap. 

These transformations allow one to express sophisticated algorithms and get 

maximal performance without leaving Python. Unlike PyTorch and TensorFlow, 

which use static or dynamic graphs to represent computations, JAX uses a functional 

approach that enables automatic differentiation and parallelization of any Python 

function. [5] 

2. Haiku – This library is based on the programming model and APIs of Sonnet, a 

neural network library for TensorFlow. Haiku enables users to use familiar object-

oriented programming models while allowing full access to JAX's pure function 

transformations. Haiku provides a module abstraction, hk.Module, and a function 

transformation, hk.transform, to manage model parameters and state. Haiku, 

released by researchers at DeepMind, has been used at scale to tackle challenges in 

various domains such as image and language processing, generative models, and 

reinforcement learning. Particularly important for this work is its composability – it 

was very easy to build new hk.Modules for the selection cuts (and the 

multiplication of the weights) [6].  

3. Optax - A Python module for optimization and gradient transformation in JAX. It 

provides a collection of composable gradient transformations that can be combined 

to implement various optimization algorithms. Optax also supports custom gradient 

transformations and higher-order differentiation. Optax is designed to be simple, 

flexible, and easy to use. [7] 

Other well-known packages are used as well (e.g., numpy [8], matplotlib [9], etc.). 

3 Implementation Discussion 

Several problems were encountered in implementing this: 1) Cuts are not differentiable, 2) 

NN design and training, and 3) how the loss function is calculated. Each sub-section discusses 

these issues. 



3.1 Cuts Are Not Differentiable 

Cuts, like 𝑝𝑇 > 30 GeV, are discontinuous 

by their nature, which means their first 

derivative is infinite right at the cut value. 

Gradient-descent needs the function to be 

continuous. If the cut is represented as a 

weight, it must smoothly transition between 

zero and one as it crosses the boundary. The 

error function and sigmoid were both 

explored, as shown in Fig 3. The slope of the 

function can be easily controlled by a 

parameter. 

Note that for all functions the derivate 

will be zero far away from the cut value. This 

can cause a problem, for example, if your 

training starts with a cut value that is far away 

from the bulk of your distribution. As an 

example, Fig 4 is the derivative of the binary 

cross-entropy for the error function, along 

one of the two axes of data. Note that the 

gradient is zero far away from the bulk of the 

distributions (around -15 or above 15). 

By default, when a training is initialized 

in most training frameworks, parameters are 

given an initial random value. If the value is 

outside the range [−15, 15], then the 

derivative will be zero – and the training 

algorithm will not be motivated to change the 

cut value. 

There are several possible approaches to 

address this issue. The simplest of which, 

adopted here, is to analyse the initial 

distribution and place the cut somewhere in the bulk of the distribution. Other options include 

artificially including adding a small, but nonzero, positive, or negative first derivative at the 

ends that push the gradient decent algorithm back towards the area that has data. 

As described in the introduction, a cut in a real analysis might be implemented in a simple 

query processor near a storage element. In this case the cuts will not generate a weight, but 

rather skim the dataset before it is sent downstream to the AF. The cut will be hard at exactly 

the value of the cut. Thus, the slope for the error and sigmoid functions shown in Fig 3 

represents an inaccuracy. However, the larger the slope, the easier time the training algorithm 

will have. One possibility is annealing – as the training gets closer and closer to the answer 

the slope can be increased until it gets close to being vertical.  

3.2 NN Design and Training 

It took several iterations to arrive at the weight-multiplication design of the network shown 

in Fig 2. There are two options to approach this. First is a stochastic training method – which 

uses estimates based on an expectation value. The attractive part of this method is that it uses 

the actual hard cuts. Each iteration through the training the algorithm estimates how often 

each branch of the cut is taken and calculates an expectation value based on that. However, 

Fig 3. The weight of a selection represented as a 

cut for the hard cut (a step function), the Error 

Function, and the Sigmoid Function. 

Fig 4. The derivative of the binary cross-entropy 

for one axis of the signal and background data 

samples for the error function as a function of the 

cut value. 



for something as simple as selection cuts, this just looks like the weight. As a result, the 

decision was made to go with a fully weight-based approach. 

This has at least one other consequence during the training: the full training dataset is 

required for training. If one goal is to use cuts to limit the data from the storage element, this 

training method means this is not possible – during training. However, even in the stochastic 

approach the cuts will be varied and likely the full phase space will need to be explored 

during the training – and as a result the full training-dataset will likely also be required here 

as well. The conclusion is that during training it is unlikely one can avoid looking at the full 

training dataset. Further that during training it does not make sense to put in machinery to 

limit the size of the training dataset coming from a query processor (if one is used). In HL-

LHC physics analyses, however, the largest single source of data for an analysis is usually 

the detector data itself, which is frequently not used for training. As a result, this technique 

should remain a big help during the inference phase of the analysis. 

3.3 The Loss Function 

There are a large variety of loss functions available to the particle physicist. Perhaps some of 

the most attractive are 𝑆/√𝐵 and binary cross-entropy. The latter was used during these 

studies. At some point the full analysis pipeline might be made differentiable, in which case 

the loss function becomes the sensitivity and perhaps the entire chain is driven by a statistical 

tool like pyhf [10] 

A typical practice when training NN is to apply the softmax function to the output of the 

NN, just before the loss function is calculated. The softmax function is a way of transforming 

a vector of real numbers into a probability distribution over a finite number of classes. It 

normalized the output of the NN to a probability distribution. The softmax function applies 

the exponential function to each element of the input vector and then divides by the sum of 

all exponentials, ensuring that the output values are between 0 and 1 and sum to 1. The 

formula for softmax is: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑𝑒𝑥𝑖
 

For this discussion it is important to note that the value of an element 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) depends 

on all the other 𝑥𝑖’s! During training this can cause results to drift in several ways, when 

applied to the final weight calculated in Fig 2. The weights from the selection cuts are no 

longer playing the role of a selection as a result. During training the NN can be pushed very 

hard to overcompensate for the selection cuts driving the training into unsensible corners of 

phase space. Instead, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function should be applied only to the output of the NN, 

and that multiplied by the selection cuts to produce the final value that is used in the loss 

function. 

As a side note – JAX and Haiku’s open and transparent building blocks for NN’s made a 

huge difference in debugging this problem. It was not very difficult to train the NN along 

with the selection cuts and the softmax function, extract the trained NN and look at its output 

values and be able to see very quickly something had gone off the rails. And then one step at 

a time to get back to the result. 

4 Conclusions 

Fig 5 shows the results of one of the trainings. The figure caption contains the final value of 

the selection cuts. Note the selection cuts are not fully outside of the signal – so besides 

cutting out a great deal of the background, they are also cutting out some of the signal. It is 



interesting to note that the training has some artifacts. The author did not have time to explore 

the cause or solution to those artifacts. However, the basic approach appears to be solid. 

The next steps are to build this into a fuller example. This toy data and toy analysis chain 

is much too simplistic. As noted in the text several shortcuts have been taken and for this to 

be built into a robust tool these will need to be addressed. Finally there is the issue of the 

user-interface. This is currently built upon JAX and Haiku. While the machinery under the 

hood might eventually need to look like that, it would be much nicer to be able to write pT>30 

and have the code automatically replace this with a sigmoid or error function. As 

improvements have been made in the stochastic approaches, a more serious comparison 

needs to be done there [11]. 

This work was supported by the National Science Foundation under Cooperative 

Agreements OAC-1836650 and PHY-2323298. 
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