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Abstract. We report the status of a neural network regression model trained
to extract new physics (NP) parameters in Monte Carlo (MC) simulation data.
We utilize a new EvtGen NP MC generator to generate B → K∗0µ+µ− events
according to the deviation of the Wilson Coefficient C9 from its SM value, δC9.
We train a three-dimensional ResNet regression model, using images built from
the angular observables and the invariant mass of the di-muon system, to extract
values of δC9 directly from the MC data samples. This work is intended for
future analyses at the Belle II experiment but may also find applicability at
other experiments.

1 Introduction

The process B → K∗ℓ+ℓ− with ℓ = e, µ proceeds via a beauty-to-strange quark (b → s)
flavor-changing neutral current, which is forbidden at tree-level in the Standard Model (SM)
of particle physics but allowed at second order [1], and is therefore sensitive to beyond the
Standard Model (BSM) physics.

There are hints of new physics beyond the SM in the observed angular distributions of
B → K∗ℓ+ℓ−. These can be more clearly identified in angular asymmetries, such as the
forward-backward asymmetry (AFB), S 5, and others, described in Ref. [2]. It is possible that
these angular asymmetries are lepton-flavor violating (LFV), with this possibility first directly
explored in a 2021 Belle analysis [3]. It is also possible that BSM physics is lepton-flavor
universal (LFU). In the future, determining the scenario from which these apparent anomalies
originate — via SM interactions with unaccounted-for hadronic effects, or BSM physics —
is a key experimental problem.

We develop a new Monte Carlo (MC) model [4] for the EvtGen package and use that to
produce “images" that are employed to train our neural network model. Our model is a three-
dimensional, 34-layer, Residual Neural Network (ResNet) [5, 6] model trained to perform
regression to extract Wilson Coefficient (Ci) [4, 7] information, δCi ≡ CBSM

i − CSM
i , directly

from data. Hence, we recast the C9 fitting problem as a computer vision problem. To this end,
we employ an MC simulation model to generate B0 → K∗0µ+µ− events, according to various
BSM scenarios parameterized by Wilson Coefficients. From the resulting distributions we
create “quasi-images" , which are then used to train a ResNet to perform a regression task.
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Our approach differs from the usual application of artificial intelligence methods in HEP,
which involves classification to distinguish various categories of events such as signal versus
background, jet classification, or particle identification (determining particle species) etc [8].
In contrast, we will perform regression and extract a continuous parameter from data. This
is similar to “fitting", a different but essential part of HEP analysis. Our neural network
model learns the correlation between these images and their δC9 labels, which is equivalent
to learning the mapping between the distributions and the δC9 labels. We apply regression and
extract the parameter δCi, where δCi = 0.0 is the SM case. Our MC result is an example of
extracting physics parameters directly from detector data. We note that the method presented
here may be find broad applicability, even in the absence of LFV BSM physics.

2 Monte Carlo Simulation Model

Recently, we have implemented effective field theory couplings in a new MC generator [4]
in the EvtGen framework [9]. The new MC generator uses the operator product expansion
formalism in terms of Wilson Coefficients (WCs, which encode high energy/short distance
physics information) C7, C9, C10, C′7, C′9, and C′10, where the latter three primed WCs corre-
spond to right-handed couplings (the weak couplings in the SM are usually left-handed).

Our EvtGen model is parameterizable in terms of the WCs’ deviation from their SM
values, i.e. δCi. Each of the δCi can be chosen by the user [4]. Choosing a non-zero δCi

has the effect of altering the correlations between four variables: q2 ≡ M(ℓ+ℓ−), the cosine of
the lepton helicity angle cos(θℓ), the cosine of the helicity of the K∗ cos(θK∗ ), and the angle
χ between the decay planes of the di-lepton and K∗ decay planes. Figure 1 shows the decay
topology and the full set of angular observables.

Figure 1: The B → K∗ℓ+ℓ− decay topology showing the observables [4]. For this study we
only consider the di-muon channel where ℓ = µ.

3 Creating the Images

Samples of MC events are generated with δC9 ∈ [−2.0, 0.0], as global theory fits for the
dimuon-specific δC9 appear to favor a negative value near -0.9 [10]. Twenty-two values
are chosen in the above range and 1 × 106 events are generated for each of the δC9 values.
Approximately 2.4×104 B0 → K∗0µ+µ− generator-level-only events populate a single image.



This corresponds to approximately 250 ab−1-equivalent integrated luminosity at a Belle II
upgrade (assuming the Belle signal reconstruction efficiency, five times the Belle II target
integrated luminosity.

Images are produced by binning the q2 value of each event in bins of cos(θµ), cos(θK∗ ),
and χ. There are 100 bins in each angular variable. Therefore, the shape of the input image
is (height, width, depth) = (100, 100, 100). In effect, we have created a grid of voxels (3D
pixels). We treat the q2 values as grayscale values, so that the images are input as tensors to
the neural network and each have shape (100, 100, 100, 1), where the value 1 denotes the
number of color channels. Figure 2 shows two examples of these images for different values
of δC9.

(a) Voxel grid image for δC9 = 0.0 (SM) (b) Voxel grid image for δC9 = −0.8

Figure 2: Voxel grid images used for training and evaluation of the ResNet. Each angular
bin is a range of angular values. The angular range is divided into 100 equal-width bins.
Examples for the cases of δC9 = 0.0 (SM) and δC9 = 0.8 are shown. The color of the voxels
does not indicate that the image has multiple color channels and is only used for visualization.

4 The Neural Network

As discussed above, a ResNet variation of the CNN is employed. Specifically, a three-
dimensional variation of the ResNet studied in Ref. [5] is used and is built using Tensor-
Flow [11] and Keras [12]. There are 34 convolutional layers in the main neural network path,
utilizing the ReLU activation function [6]. Stochastic gradient descent is used for optimiza-
tion. The loss function is the mean absolute error (MAE) [6]. At the end of network there is
one fully-connected layer employing 5000 neurons, followed by a drop-out layer with a 50%
drop-out probability. The final layer is a dense layer with one neuron and a linear activation
function that performs the regression task to extract δC9 values directly from the images 1.
No hyperparameter optimization was done as the initial model appeared to performed well.

1The linear activation function is used as its range is a continuum of values in (−∞,∞).



4.1 Training the Neural Network

Approximately 12000 voxel grid images are used for training, corresponding to about 540
images for each δC9 value. This training set is split with approximately 20% reserved for
validation. To facilitate learning, the learning rate is reduced every five epochs by a factor of
1/5, if no improvement in the validation loss is seen. Early stopping is implemented if there
is no improvement in the validation loss (MAE) after 50 epochs. Training is performed using
the GPU nodes of the University of Hawai‘i’s MANA HPC cluster.

5 Results
As this is a AI/ML model for regression and not classification, standard tools to assess the
trained model used in classification, e.g. the receiver operating characteristic (ROC) curve,
are not applicable here. Instead to test the model, we examine ensembles of MC simulation
experiments. For each of the 22 WCs that were used to generate training images, statistically
independent samples of 1600 images are generated for testing. Each of the ensembles of 1600
images are passed through the trained network and a distribution of predicted δC9 values are
obtained. These distributions are fitted with a Gaussian function and the mean and width
from these fits are used to assess performance. We also perform this test using δC9 values
that are between the ones used to generate the training images. This provides a further test of
model robustness.

These ensembles tests are performed for all δC9 values used to generate images for train-
ing and for δC9 values between the ones used to generate images that were not used in train-
ing. The fit results are plotted against their generated values to obtain a linearity plot, shown
in Fig. 3.

Figure 3: From ensemble experiments, it is seen that the trained ResNet is able to correctly
extract the different δC9 values from independent and unlabeled images. The black points are
from experiments where the images are generated according to δC9 values the ResNet has
been trained with, and the red points are from experiments where the images are generated
according to δC9 values with which the ResNet has not been trained.



6 Discussion

As seen in the linearity plot in Fig. 3, the ResNet appears to be able to obtain a mapping
between δC9 values and MC signal events when those events are recast into images. However,
as one approaches the SM δC9 = 0.0 value, performance degrades since the images closer to
the SM are harder to distinguish. Further, when compared to the results of the 4D unbinned
maximum likelihood fit to generator-level signal MC samples in Ref. [4], the error bars from
the ensemble test for δC9 = 0.0 can be 60% larger, at 250 ab−1-equivalent signal events.
Nevertheless, we do not interpret this as a major defect for the method presented here. These
issues are likely to be ameliorated with more training data and an extension of the training
data to the positive δC9 range, so that the model can better learn the mapping. We expect
further improvements by separating B and B̄ events into separtate images, and removing
multiple entries in bins, which constitute approximately 3% of all bins.

Further, using a 4D unbinned maximum likelihood fit has a number of problems in a
real high-energy physics experiment. In the presence of backgrounds and resolutions, it is
difficult to parameterize the backgrounds, efficiency, and resolution in multiple dimensions.
These associated issues can be greatly mitigated if the task is recast as a computer vision
problem.

The main issue with the method described here is one of computational power and stor-
age. We used δC9 and high-statistics generator-level MC samples for the demonstration. In
reality, a fully trained and useful model would have to be trained using images according to
all the WCs mentioned above, as well as different integrated luminosities (assuming applica-
bility at Belle II).

7 Conclusion

We have trained a three-dimensional ResNet to learn a mapping between different δC9 val-
ues and images created using MC simulations of B → K∗µ+µ− decays. We have recast the
problem of fitting complicated multi-dimensional distributions using maximum likelihood
techniques as a standard computer vision problem. This should make it easier to take into
account experimental complexities such as backgrounds and experimental resolutions, and
does not require projecting down to a lower dimension (e.g. in this case to angular asymme-
tries such as AFB and S 5), losing potentially valuable information. Our approach may also
find application to studies of B̄0 → D∗+ℓ−ν̄, where a new BSM physics generator has also
recently been developed [13].

It has been shown that a ResNet is indeed able to learn this correlation and successfully
extract information about the relevant physics parameters. Difficulties with this method will
likely be mitigated with increased training sample sizes and additional computational re-
sources. We will improve and publish results after the generation of an enhanced training
set.
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