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Abstract. A new methodology to improve the sensitivity to new physics con-
tributions to the Standard Model processes at LHC is presented.
A Variational AutoEncoder trained on Standard Model processes is used to
identify Effective Field Theory contributions as anomalies. While the output
of the model is supposed to be very similar to the inputs for Standard Model
events, it is expected to deviate significantly for events generated through new
physics processes. The reconstruction loss can then be used to select a signal
enriched region which is by construction independent of the nature of the cho-
sen new physics process. In order to improve further the discrimination power,
an adversarial layer is introduced with a cross entropy term added to the loss
function, optimizing at the same time the reconstruction of the input variables
of the Standard Model and classification of new physics processes. This proce-
dure ensures that the model is optimized for discrimination, with a small price
in terms of model dependency to physics process.
In this work I will discuss in detail the above-mentioned method using generator
level Vector Boson Scattering events produced at LHC assuming an integrated
luminosity of 350/fb.

1 Introduction

In 2012, a significant milestone in particle physics was reached when the ATLAS and CMS
collaborations confirmed the existence of the Higgs boson, marking a key moment in the
validation of the Standard Model (SM) [1, 2]. The SM encodes our most comprehensive
account of the fundamental fabric of matter, by describing all the known elementary particles,
and three of the four fundamental forces that govern the interactions between them. Over time
it proved capable of offering precise experimental predictions and theoretical explanations
for numerous phenomena, but the persistent unresolved questions indicate the need for its
expansion to include new physics contributions: for example, the presence of dark matter [3],
the relative abundance of matter over antimatter [4] and the so-called hierarchy problem [5].

Many Beyond Standard Model (BSM) theories have been proposed, attempting to answer
the several questions that the SM does not resolve. However, despite the increasingly large
amount of statistics made available by the LHC, there are no indications for processes pre-
dicted by those theories. Since the number of possible BSM theories and their variations in
terms of free parameters is extremely large, and only few of them can be tested, it is possible
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that so far we have simply chosen the wrong models to look for. As a result, many efforts are
currently directed towards the development of agnostic analyses with respect to the underly-
ing BSM theory assumed, marking a change of paradigm in the way new physics searches are
carried out at the LHC (see for example [6, 7]). A possible strategy to probe BSM physics is
the so-called Standard Model Effective Field Theory (SMEFT) [8], a low-energy, generalized
SM extension that can be used to parametrise small deviations of SM observables. In this
perspective, the SM lagrangian is expanded in a series with respect to the inverse of the new
physics energy scale, and the higher order operators represent the new physics contributions.
Following the SM Lagrangian, which has dimension 4 in terms of energy, the first terms of
such expansion that comply with the accidental symmetries of the SM are of dimension 6 and
8.

SMEFT is a complex, multidimensional problem: it involves thousands of parameters to
constrain and each EFT operator affects each variable differently. Therefore, it is extremely
hard to define a single kinematic observable that allows for detecting all operators: our goal
is thus to build a strategy that maximizes the observation of anything that is not SM. Our
strategy relies on unsupervised learning, following an increasingly popular choice in the field
of independent searches, as an unsupervised model does not require any knowledge of a
specific BSM theory. The underlying idea is to train a model on known physics, and then to
use it to detect EFT events as outliers. We adopt a model based on Variational AutoEncoders
(VAE) [9, 10], generative algorithms that encode the inputs over a lower-dimensional latent
space, from which a point is then sampled and mapped back to the input space through
a second network. As EFT events follow different patterns than the ones the VAE learnt
during training, they will be reconstructed poorly. Therefore, anomalies can be singled out
by building a metric that accounts for the difference between input and output event by event.

To test such strategy we employed parton-level simulations of Vector Boson Scattering
events at the LHC, considering the expected integrated luminosity of Run 3, namely 350
fb−1. This study has been conducted neglecting any background process and considering
generator-level observables.

2 The physics usecase: Vector Boson Scattering at the LHC

A suited physics process for model independent BSM studies is the scattering of vector
bosons (VBS) [11], an event that takes place at the LHC when two partons of the incom-
ing protons radiate vector bosons, which in turn interact. Such process is expected to be
sensitive to modifications of the EW sector and of the Higgs mechanism: a delicate set of
cancellations between VBS diagrams with and without the Higgs boson takes place in order
for the VBS cross-section to be non-divergent. Any slight modification to such delicate equi-
librium would manifest itself in anomalous contributions to the various VBS observables,
independently from the theory assumed to describe the new physics responsible for the dis-
crepancies. In particular, VBS provides tree-level sensitivity to effective operators inducing
modifications of triple and quartic gauge couplings, as well as of Higgs-gauge couplings away
from the Higgs mass-shell, and even to contact interactions among four quarks. Mainly mo-
tivated by the sensitivity to quartic gauge couplings, previous studies of EFT effects in VBS
were often restricted to dimension-8 operators. The impact of dimension-6 operators was
explored systematically only recently, mainly driven by the interest in incorporating these
measurements into global SMEFT analyses. In this study we will focus on the latter.

Due to their electroweak nature, VBS processes tend to suffer from a quite low signal to
background ratio. However, the production of two same-sign W bosons (SSWW) decaying
leptonically produces a very clean signature in the detector, shown in Fig. 1. It comprises two
jets with a large invariant mass in the forward region, two same-sign charged leptons and the



missing transverse energy due to the two neutrinos. SSWW is therefore considered a golden
channel for many experimental measurements, as the background induced by quantum chro-
modynamics (QCD) processes is relatively small compared to the EW induced production.

Figure 1. Topology of same sign WW scattering in the fully leptonic final state.

The observables we studied comprise several kinematic and angular distributions encod-
ing the most important features of SSWW scattering: the invariant masses of the dilepton
and dijet systems (mll and m j j), the transverse momentum of the two leptons and two jets
(ptl1 , ptl2 , pt j1 , pt j2 ), the transverse momentum of the dilepton system (ptll ), the missing trans-
verse momentum (MET), the pseudorapidities of leptons and jets (ηl1, ηl2, η j1, η j2) and the
pseudorapidity and azimuthal angle differences between the two jets (∆η j j, ∆Φ j j).

3 A dimension-6 EFT interpretation of VBS

SMEFT [12–14] is a generalized SM extension that can be used to describe small deviations
in the distributions of SM observables. Within the SMEFT framework, the BSM contribu-
tions are described by taylor-expanding the SM lagrangian in powers of 1/Λ, where Λ is
the energy scale of the new physics. The BSM effects are thus parametrized as the resulting
higher dimensional operators, which respect the Lorentz and SU(3) × SU(2) × U(1) gauge
invariances:

LEFT = LS M +
∑
i,d>4

ci

Λd−4Q
(di) (1)

where Qd
i is a set of dimension d operators and ci are the so-called Wilson Coefficients, that

gauge the intensity of their effect. The presence of additional terms in the Lagrangian results
in a variation of the scattering matrix amplitude of known processes predicted by the SM.
Processes that have a large EFT contribution can be used to measure the sensitivity to new
operators, putting limits on the Wilson coefficients values and probing for the presence of
new physics effects.

In this study we focus only on dimension 6 operators [15]. We employed the SMEFTsim
package [16] to generate the EFT predictions at leading order in the U35 flavour scheme and
mW input scheme for the following operators: QW , Q(1)

Hq, QHW , Q(1)
qq , Q(1,1)

qq , Q(3)
qq , Q(3,1)

qq . The
events were generated at parton level via MadGraph5_aMC@NLO [17].



3.1 Dim-6 operator effects on the observables

The SMEFT Lagrangian, truncated at dimension six and considering a single non-zero oper-
ator Qα, can be written as follows:

LBS M = LS M +
c(6)
α

Λ2 Q
(6)
α (2)

The presence of an additional term with respect to the traditional SM Lagrangian is reflected
into a variation of the amplitude of the process under study:

ABS M = AS M +
cα
Λ2 · AQα (3)

Squaring ABS M yields a quantity proportional to the event probability:

|ABS M |
2 = |AS M |

2 +
cα
Λ2 · 2Re(AS MA†

Qα
) +

c2
α

Λ4 · |AQα |
2 (4)

Here, the first term represents the pure SM contribution, while the following ones introduce a
linear and quadratic dependence on the EFT amplitudes. These operators collectively modify
the kinematic distributions of the given process as shown in Fig. 2, and the extent of these
modifications depends on the Wilson coefficients associated to each operator.

Figure 2. Distributions of pure SM, linear and quadratic contributions (solid colored lines) for different
observables: δη j j (top left), η j2 (top right) and log10(pT, j1) (bottom). The distributions are normalised
to an area of 1. The weighted sum of the three contributions gives the overall BSM distribution (filled
histogram).

4 The anomaly detection strategy: a VAE-based model

VAEs are a type of probabilistic generative models. They work by creating a hidden represen-
tation of input data, which is then used to recreate an output that closely matches the input.



These models were first introduced in 2013 [9] and have since found applications in various
areas, such as generating content and reducing noise. However, because of their generative
capabilites, VAEs can also be useful for creating reliable anomaly detection methods that can
handle variations in the reference data.

4.1 VAE architecture

The VAE architecture consists of two main components, each realized as a deep neural net-
work. The first one, known as the encoder, is responsible for mapping the input distributions
into a lower-dimensional latent space. During training the latent space is forced to be regular,
i.e. to be described by a Gaussian distribution: such regularity enhances the model’s flex-
ibility and expressive capacity. The second component, called decoder, operates as a com-
plementary network performing an inverse transformation that maps points sampled from the
latent space back to the original input space. This process aims to generate an output closely
resembling the input.

The model is trained by minimizing a loss function comprising two key components: the
Mean Squared Error (MSE) between input and output, ensuring accurate reconstruction of the
inputs, and the Kullback-Leibler Divergence (KLD). The latter forces the latent distributions
to be close to Gaussian distributions, therefore accounting for the regularization of the latent
space.

4.2 VAEs for anomaly detection

Anomaly detection is the task of finding unusual patterns in a dataset: in our case this means
to isolate events stemming from BSM processes, based on the difference in their signature
with respect to the known physics. To achieve this, the VAE model is trained only on SM
events, therefore it learns the underlying patterns of known physics. Once trained, the model
is evaluated also on BSM events, which exhibit different structures from those learned during
training. Therefore, the model does not interpret such events as well as SM ones, as shown in
Fig. 3. To assess the quality of the reconstruction of an event we compute the MSE between
input and output, averaged on all the observables. By selecting the events for which the MSE
is greater than a certain threshold we are able to identify an region enriched in anomalies, as
shown in Fig. 4.

Figure 3. Comparison between the input and output
of the model in the case of SM (left) and BSM (right)
distributions for the pseudorapidity of the leading jet.

Figure 4. MSE for SM (blue) and BSM
(red) events. Anomalous events lie in
the tail of the loss function.

Two preprocessing strategies were employed: first we scaled the input distributions be-
tween 0 and 1 and we computed the logarithm of the kinematic variables to reduce their
dynamic range. Then we split the SM sample in two subsets comprising 80% and 20% of
the total 900000 events, respectively used for training and testing. The whole strategy is
implemented through the scikit-learn [18] and TensorFlow [19] libraries.



4.3 Embedding a classification step in the training to optimize for discrimination

The primary limitation of this approach arises from the fact that, despite our aim being the
isolation of EFT events, the training process is optimized exclusively for reconstructing a SM
dataset. However, choices that enhance SM reconstruction are not always ideal for discrim-
ination purposes: for instance, a larger latent space was found to improve SM events recon-
struction, but it diminishes the model’s ability to discriminate against EFT perturbations. This
can be explained by the fact that a more complex latent space allows for the model to better
learn the underlying data structure, and therefore the SM reconstruction improves. However,
this enhanced understanding also translates to improved extrapolation capabilities, ultimately
compromising discrimination power.

To address such limitation, we introduced a classification step in the training procedure
by incorporating a third component into the model, namely a two-layers neural network func-
tioning as a classifier. Encoder, decoder and classifier are separate architectures, each com-
prised of several densely connected layers, that are later integrated into an end-to-end model.
The Encoder and Decoder consist of three layers with dimensions 20, 10, and 7, respectively,
all employing a Leaky ReLU activation function. The dimension of the latent space has a
profound impact on the model’s performance and has been varied between 3 and 7, resulting
in the effects described earlier. The Classifier comprises two layers: the first with a dimen-
sion of 50 and a linear activation function, and the second with a dimension of 1 and a hard
sigmoid activation.

To train this model, we divide the training sample into two datasets. One dataset exclu-
sively contains SM events, while the other includes both SM and EFT contributions. Initially,
the VAE part of the architecture processes the SM subset, and the resulting MSE and KLD
are added to the model losses for minimization. Subsequently, the sample that includes EFT
contributions is processed through the model: the MSE and KLD losses obtained from this
step are used as inputs for the Classifier, and its binary cross-entropy is added to the overall
model loss.The total loss minimized during the training is therefore a sum of three compo-
nents, namely the MSE, KLD and binary-crossentropy, therefore effectively embedding the
discrimination process within the training procedure.

It’s important to note that this strategy introduces an additional reliance on the modeling
of new physics contributions. To maintain as much model independence as possible, we
chose to use a single operator during training and later assess the model’s performance with
other operators as well. Figure 5 shows the architecture and anomaly detection strategy.

Figure 5. Structure of the VAE+DNN model and anomaly detection strategy.

5 Results

To quantify the discrimination power of the models we defined a proxy metric for the signifi-
cance σ, namely by considering the number of BSM events detected in the anomaly-enriched



region, minus the number of SM events that pass that same selection:

σ(cop) =
|nBS M(cop) − nS M |

√
nS M

=
|nLIN(cop) + nQUAD(c2

op)|
√

nS M
(5)

A model is considered sensitive to a given operator if σ = 3 for some value of cop (table 1).
The smaller the value of cop for which we have σ = 3, the better.

Table 1. The value of cop for which σ(cop) = 3, considering an integrated luminosity of 350 f b−1. The
results for the VAE+NN refer to a model trained to reconstruct SM VBS EWK events and to

discriminate them from a sample comprising contribution from the QW operator: during training cW is
set to 1, then the events are properly weighted by the correct value of cop.

model cW c1
qq c1,1

qq c3
qq c3,1

qq c1
Hq cHW

VAE 0.34 0.56 0.29 0.04 0.06 - 0.41
VAE+NN 0.13 0.17 0.18 0.11 0.11 0.61 0.65

The first conclusion we can draw is that it is possible to separate EFT contributions from
known physics by means of the VAE model. Furthermore, the embedding of the classifier in
the model improves the discrimination without impinging excessively the generality of the
approach: the performances improve significantly for QW , on which the model was trained,
but also for Q(1)

qq , Q(1,1)
qq and deteriorate only slightly for Q(3)

qq , Q(3,1)
qq and QHW . Furthermore,

the new model is sensitive to Q(1)
Hq, which was not detected by the simple VAE since we only

considered values of cα smaller than one.

5.1 Conclusions and future perspectives

This study demonstrates the feasibility of employing a VAE-like model to isolate an EFT-
enriched region. By training the model to recognize known SM physics patterns exclusively,
we were able to detect BSM phenomena in a model-independent manner. Such procedure
was tested using the SSWW VBS process, considering an integrated luminosity of 350 f b−1.
Figure 6 shows the comparison between the shape of the model score and of a simple kine-
matic variable with tight selections targeting a VBS-like signature. Even though the latter
may be optimal for a single operator, it is not sensitive to other operators; on the other hand,
the model score grants sensitivity to several EFT operators.

Figure 6. Comparison between the output score of the model (left) and a simple kinematic variable
with tight selections to select a VBS-like signature (right).



While this study has demonstrated the potential of unsupervised models in detecting EFT
deviations in the SSWW signature, a comprehensive analysis incorporating the additional
SM background sources and employing fully reconstructed events is essential to evaluate the
practical sensitivity of the proposed approach. Further investigations in this direction will be
carried out, encompassing the primary sources of background for the 2l2ν + 2 j final state:
these include for example events with nonprompt or fake leptons, as well as the relatively
rare QCD-induced production.
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