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Abstract. The Jiangmen Underground Neutrino Observatory (JUNO) experi-
ment is designed to measure the neutrino mass ordering (NMO) using a 20-kton
liquid scintillator (LS) detector. Besides the precise measurement of the reactor
neutrino’s oscillation spectrum, an atmospheric neutrino oscillation measure-
ment in JUNO offers independent sensitivity for NMO, which can potentially
increase JUNO'’s total sensitivity in a joint analysis. In this contribution, we
present a novel multi-purpose reconstruction method for atmospheric neutrinos
in JUNO at few-GeV based on a machine learning technique. This method ex-
tracts features related to event topology from PMT waveforms and uses them
as inputs to machine learning models. A preliminary study based on the JUNO
simulation shows good performances for event directionality reconstruction and
neutrino flavor identification. This method also has a great application potential
for similar LS detectors.

1 Introduction

The Jiangmeng Underground Neutrino Observatory (JUNO) [1][2] is currently under con-
struction in southern China. The main physics goal of JUNO is to determine the neutrino
mass ordering (NMO). JUNO’s central detector (CD, Figure 1) is a 20-kton large-volume
liquid scintillator (LS) detector designed to precisely measure the reactor neutrino spectrum
from the Taishan and Yangjiang nuclear power plants. The scintillation light produced by
neutrino interactions in the JUNO CD is collected by 17612 20-inch photo-multiplier tubes
(PMTs) and 25600 3-inch PMTs, providing a total PMT coverage of 78%.

While the JUNO NMO sensitivity is mainly from reactor neutrino oscillations in vacuum,
atmospheric neutrino oscillations offer extra sensitivity to NMO via matter effects. A joint
analysis of reactor and atmospheric neutrino oscillations can potentially maximize JUNO’s
total sensitivity. Atmospheric neutrinos are produced by energetic cosmic rays interacting
with the upper atmosphere. The atmospheric neutrino flux consists of v,, ¥, v, and ¥,,
which can undergo charged current (CC) or neutral current (NC) interactions in the detector.
The identification of neutrino flavor is critical for the measurement of oscillation probabilities
and the extraction of the oscillation parameters. Besides, the directionality information is also
mandatory since it determines the neutrino’s oscillation baseline length.

*e-mail: duyang @sdu.edu.cn



Top tracker and
calibration house

Water pool

AT B Y 3 3 J“.; Earth magnetic
. T ') Ineld

coils

7 \ S\ S
2 % ‘tﬁ i&g s | Photo-multiplier
A B o tubes
v SR TFRR
&
@
RS

Acrylic spherical

vessel filled with
liquid scintillator

y & i Acrylic
Ay f supporting nodes

Figure 1. Drawing of the JUNO CD design. The homogeneous LS detector is submerged in a water
pool that serves as a Cherenkov detector to veto external backgrounds. On the top of the WP is the Top
Tracker (TT) detector with plastic scintillators to further help in tagging cosmic ray muons.

However, LS detectors, while offering excellent energy resolution and low threshold and
playing an important role in low-energy neutrino physics topics, are traditionally believed to
have very limited capability for atmospheric neutrino measurements. This is because those
homogeneous detectors do not provide direct tracking information and the Cherenkov light
is too weak compared to the scintillation light to give directionality or particle identification
information. No measurement of atmospheric neutrino oscillations in an LS detector has ever
been reported before.

In this proceeding, we describe a novel method for reconstructing atmospheric neutri-
nos in an LS detector based on machine learning (ML) techniques. This method starts with
extracting features relevant to the event topology in the detector from the PMT waveforms.
ML models are trained to learn from these features and output the original event information.
We demonstrate that this method can be used for multiple purposes, including the recon-
struction of atmospheric neutrinos’ directionality, and the identification of their favors. The
performances with Monte Carlo (MC) simulations are presented.

2 Methodology

The energy range of atmospheric neutrinos that is most sensitive to NMO is about 1-10 GeV.
In this energy region, neutrinos can interact with LS and produce charged particles with
enough energy to make tracks with lengths of several tens of centimeters or longer. The
space and time distribution of scintillation light photons produced by these charged particles
are not isotropic but depend on the detailed event topology in the detector. Figure 2 shows
the number of photoelectrons (PEs) as functions of time for PMTs at different angles with
respect to a simulated muon track. PMTs at different angles see distinct PE time distributions
and therefore have distinct waveforms. The exact shape of the waveform depends on the
relative position of the PMT to the particle track as well as the energy deposition (dE/dx)
along the track. In this study, features are extracted from PMT waveforms in the first 1.25
us readout window to mathematically describe the characteristics of the waveforms that are
relevant to the event information. Such features include the time of the earliest photon seen
by a PMT (first hit time, FHT), the total charge, the slope of the waveform in the first 4 ns
after FHT, the ratio of the charge in the first 4 ns after FHT to the total, the charge and time
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Figure 2. Comparison of the normalized PE time distributions between PMTs at different angles with
respect to a simulated 1 GeV muon track. Distinct shapes are observed.

Input channels

ChebConv Layer x2 ChebConv Layer

Max pooling
Layer

Fully connected Layer

Prediction

Figure 3. The DeepSphere-based model architecture used in this study. The model consists of four
blocks, each with two Chebyshev convolution (ChebConv) layer and a max pooling layer, followed by
an additional ChebConv layer, a fully connection layer and a prediction block.

of the waveform peak, and others. Those features are used as inputs to ML models. Only
features from 20-inch PMTs are used in this study.

Features from all the 20-inch PMTs on the inner surface of the JUNO CD form spherical
images-like data. Three different types of ML models are developed to process such data. The
first is a planar model based on EfficientNetV2 [3]. It inputs pictures formed by projecting
features of each PMT onto a 2D 6pyr and ¢pyr grid, where Opyr/dpyr 1s the zenith/azimuth
angles of the PMT position. The second is a spherical model, based on DeepSphere [4],
which deals with spherical images. The third is a 3D model based on PointNet++ [5] which
inputs the PMT features as 3D point clouds. The structure of the DeepSphere-based model is
shown in Figure 3. The structures of the EfficientNetV2-based and PointNet++-based models
are taken from [3] and [5] with minor modifications.

The dataset used in this study is simulated with the official JUNO software with complete
detector and electronic effects. The GENIE neutrino event generator [6][7] is used to simulate
Vu/Vu-CC, v,/v,-CC and NC interactions with neutrino flux from [8].
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Figure 4. The 6, resolutions are shown as functions of neutrino energy E, for v,/v,-CC (left) and v./v,-
CC events (right) using the three ML models.

3 Performances

Both the neutrino directionality reconstruction and flavor identification performances are re-
ported in this proceeding. The models described in section 2 are trained by the simulated
dataset separately for these two purposes. 80% of the dataset is used for model training with
the rest 20% for validation. The results of the validation sample are quoted as the perfor-
mances of reconstruction and event identification.

3.1 Directionality

In the case of directionality reconstruction, a directional unit vector representing the incom-
ing neutrino direction is chosen as the model output. The loss function is the Euclidean
distance between the true and reconstructed endpoint of the vector. The angular resolution
is defined as one standard deviation of the Gaussian fitted difference between the true and
reconstructed zenith angles of the neutrino (6,) in 1 GeV neutrino energy bins. Figure 4
shows the resolutions as functions of neutrino energy for all three models, with v,/v,-CC
and v,/v,-CC evaluated separately. Overall the three models show comparable performances,
which improve with increasing neutrino energy. It is also noticeable that the performance of
v,./v,-CC is slightly better than v,/v.-CC, which is understandable since the (anti-)muons in
the final state of v,/v,-CC interactions generally provide better directional information than
the electrons/positrons in the v,/7,-CC case which showers in the LS detector.

3.2 Flavor identification

A 3-label classification is reported for the neutrino flavor identification. The three categories
are v,/v,-CC, v,/,-CC and NC events. Note that the neutrino versus anti-neutrino identifica-
tion is also possible with Michel electron and neutron capture information. Michel electrons
and captured neutrons produce delayed triggers after the prompt trigger. Only results obtained
from the prompt trigger (the first 1250 us) features are reported in this proceeding. The ML
models again show comparable performances. The selection efficiency and purity of the two
signal samples, v,/v,-CC and v,/v.-CC, are shown in Figure 5 using the DeepSphere result
as an example. Both the efficiency and purity improve as energy increases below 3 GeV, and
then get worse when the energy is above 5 GeV. This could be explained by the fact that at low
energies the track lengths of (anti)muons or electrons/positrons are too short in the final state
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Figure 5. Selection efficiency (red) and purity (blue) of the v,/v,-CC (left) and v./v.-CC (right) events
as functions of event visible energy in this study.

of v,/#,-CC and v,/v,-CC interactions, while at higher energy, the NC interactions tend to
produce energetic charged or neutral pions which mimic (anti-)muons or electrons/positrons
in LS and make the identification more difficult.

4 Summary

A multi-purpose reconstruction method for atmospheric neutrinos in JUNO is presented.
Both the directionality reconstruction and flavor identification show promising results cross-
checked by different ML models. This is the first time that these goals have been achieved
in a homogeneous LS detector with MC simulation, making a future atmospheric neutrino
oscillation measurement in JUNO possible. While developed for JUNO, this method is in
principle applicable to other LS detectors and other physics topics in the GeV energy region
as well, which can greatly expand the application of LS detectors in particle physics.
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