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Abstract. ML/DL techniques have shown their power in the improvement of
several studies and tasks in HEP, especially in physics analysis. Our approach
has been to take a number of the ML/DL tools provided by several open-source
platforms and apply them to several classification problems, for instance, to
the tt̄ resonance extraction in the LHC experiments. Gradient-boosting Trees,
Random Forest, Artificial Neural Networks (ANN), etc. have been used and
optimized by means of adjusting several hyperparameters to control overfitting.
On top of this, data simulation with traditional models is computationally very
demanding, making the use of generative models an alternative for generating
simulated Monte Carlo events with similar quality at a lower computational
cost. This could help to produce more simulated data statistics available for
better sensitivity and more accurate assessment of systematic errors in poten-
tial Physics Beyond Standard Model discoveries. In this work, we study the
use of generative models based on Deep Learning as faster Monte Carlo event
generators in the LHC context, reducing the time and energy cost of currently
used methods. In particular, we focus on different configurations of Variational
Autoencoders, taking as a starting point the well-known β-VAE and proposing
the α-VAE as a new and simpler VAE architecture that improves the results in
some experiments. Considerations will be made about the reliability of these
simulated data when they are produced with very high statistics.

1 Introduction

The Standard Model (SM) 1 presents certain deficiencies and lacks an explanation for some
fundamental aspects of the behavior of matter. LHC experiments, as ATLAS and CMS, were
designed and built to solve those questions taking advantage of the capabilities of the Large
Hadron Collider. One of the main objectives is to search for signals of the so-called Physics
Beyond the Standard Model, an extension of the current model that should be able to explain
the current unknowns. Comparing real data, obtained from experimentation, with simulated
∗e-mail: jose.salt@ific.uv.es
1It is the theory of Particle Physics that describes the structure of matter and the forces that govern it and that is

currently accepted as the one that better explains the observations and experimental results.



data, coming from theoretical models, it is possible to determine if those signals have been
found, validating the discovery of new events. This contribution focuses on improving the
sensitivity to discover new particles in LHC experiments and, as an example, we address the
tt̄ system produced in proton-proton collisions. This work presents two different parts.

The first part consists in the application of different ML/DL methods for the separation
of signal from the background to search for tt̄ resonances, which is our signal, in LHC exper-
iments. This is a classification task and a comparative study among several ML methods is
provided. The second part is devoted to the use of Generative Models to produce Simulated
Data for searching New Physics in LHC experiments. Deep Generative Models aim to be an
important contribution to Monte Carlo traditional data since these models can simulate events
with similar quality at a lower cost. The traditional models based on numerical computation
are much more computationally expensive, demanding much more energy and time.

2 PART I: Classification of tt̄ events

Machine Learning classifiers have been applied to many physics analyses in LHC exper-
iments. In the case we are addressing, the tt̄ resonances, the study has been done using
several ML methods applied to datasets of a dataset repository [1]. A first collection of in-
teresting results was given in this contribution which was triggered by the work done in [2]:
Extra-Trees2, logistic regression and NN were included. Subsequently, we have completed
the studies, especially with Decision Trees methods, since BDT (BoostedDecisionTrees) are
used quite frequently in ATLAS with very good results. In our approximation, we do not
make a particular breakdown for each type of background but we include them in a single
generic background source.

Our natural physical case for applying them to search a new particle X of unknown mass
which is a resonance which decays to tt̄ pair. This new particle, which is the signal, can be
one of different candidates according to different theoretical scenarios. Here we take the Z’
model but there are several other ones as KK (Kaluza-Klein) graviton, KK gluon, etc. On
the other hand, tt̄ are also the final state of SM processes and, in this case, we have different
background sources [4]. Figures 1 show the structure of the collision event and the Feynman
diagrams of the signal and the background respectively.

2.1 Simulated Data

The study has been performed using a repository of datasets [3]. These events have been
obtained by using Pythia and MADGRAPH [5]. In the schema given in Figure 1 (left), the
semileptonic channel of a tt̄ event displayed: one top is decaying into Wb and W going
into lepton + neutrino, and the other top (antitop) decaying into Wb and W into two quarks
(hadronized jets). Feynman diagrams corresponding to the signal and background are shown
in Figure 1. In these diagrams, we display an SM process and a BSM process. The first one
is an SM QCD 3 process which will be considered as a background event and the second one
is a Beyond the Standard Model with a resonance - named X- formed by tt̄ and the overall tt̄
system.

In Figure 1 (left), the anatomy of top decays for a given event is shown. Taking into
account the particles in the final state, one can consider the kinematic variables: transverse
momentum, pseudorapidity and azimuth of the lepton (muon or electron); transverse momen-
tum, pseudorapidity and azimuth of the 4 more energetic leading jets: b tagging of these four

2Extra-Trees is an abbreviated expression of Extremely Randomized Trees
3QCD is the acronym of Quantum ChromoDynamics



Figure 1. Anatomy of a collision event with tt̄ in the final state (a) and Feynman diagrams of tt̄ events
(b).

jets and the transverse momentum and azimuth of missing transverse energy. On top of these
low-level variables, the event data contain five more variables, the so-called high-level vari-
ables, corresponding to the invariant mass of the W decay, both the top and the antitop decay
separately. In order to speed up the prospect analysis we performed our studies applying the
ML techniques on datasets placed in the repository given in [3].

2.2 Discriminant variables

From the point of view of data information, each event is a collection of several variables
or features. Each of these variables provide a certain level of discrimination between SM tt̄
events and BSM tt̄ events, allowing the separation of the signal from the background. Thus
there is a dataset for the background events and five datasets for the signal events consisting
of events generated with five different values of the resonance mass: 500 GeV, 750 GeV, 1000
GeV, 1250 GeV, and 1500 GeV in order to scan a plausible range of masses.

2.3 Machine Learning Methods

Several Machine Learning Methods have been applied to this set of features. In this case, a
more extensive study has been performed with respect to the one reported in [1]: BDT and
Random Forest; and simple, complex and parameterized Neural Networks.

2.3.1 Parameterized Neural Networks

The study carried out in [1] was focused in trying to obtain an improvement using Parame-
terized NN. One of the possible solutions to this problem would be the use of parameterized
models, which are based on including mass as one additional feature. In a real case, the idea
would be to train the model with masses from the simulations. When making predictions
on real data, a mass parameter would be added to them. Several tests could be done with
masses suspected to be the mass of particle X, and they do not have to be the masses used for
training. These possible masses could be estimated from the inspection of the invariant mass
distributions of the tt̄ system. The improvement in the application of this method has been
quite marginal but there will be a continuation within a further analysis activity.



Table 1. Results of the performance of different ML methods

Better Better Better
RF BDT NN

Mass Acc Kappa F1-S Acc Kappa F1-S Acc Kappa F1-S
500 0.787 0.574 0.756 0.819 0.638 0.785 0.663 0.326 0.679
750 0.851 0.700 0.841 0.852 0.704 0.837 0.850 0.699 0.855
1000 0.895 0.790 0.891 0.889 0.779 0.882 0.914 0.829 0.915
1250 0.925 0,849 0.923 0.922 0.844 0.919 0.941 0.882 0.942
1500 0.946 0.892 0.946 0.944 0.888 0.942 0.958 0.916 0.958

2.3.2 Decision Trees

A deeper study using Decision Trees has been done triggered by the success of the application
of BDT in LHC, in particular, in the analyses that led to the discovery of the Higgs. Boosted
Decision Trees allow the use of trees with little classifying power, such as trees with little
complexity or composed of a single node (stumps) as good classifiers. Adaptive Boosting
(AdaBoost) algorithm has been used. This algorithm initially assigns the same weight to all
events in the training dataset. After training the first simple tree, depending on whether an
event has been correctly classified, a new weight is reassigned to each event generating a new
dataset (samples are not replaced only the weights). Then, the next simple tree is trained,
newer weights are reassigned to each event, and so on, till a predefined number of trees have
been trained. On top of the BDT we have used Random Forest (RF) in order to get a full
picture of the two DT approaches [6].

2.4 Comparison between different ML methods

In our approximation, we do not make a particular breakdown for each type of background
but we include them in a single generic background source. Each ML method has different
sets of hyperparameters which helps to improve its performance. For instance, in the case
of BDT we fixed a maximum depth of trees and the number of iterations. For the rest of the
methods, we have systematically tested different hyperparameters within their usual ranges of
use. After evaluating the performance of different ML methods we extracted the best results
for RF, BDT, and NN, shown in Table 1 using the metrics Accuracy, Kappa, and F1-score.

In summary: BDT give better results with a maximum depth of 3 levels and it is optimized
with 300 iterations; BDT improves the results of RF at low masses, but RF is slightly better
at high masses. Best results with RF were obtained using 5 variables and 500 DT estimators.
NNs vs BDT and RF: simple NN gives the worst results when applied to low mass dataset
with respect to BDT and RF, but they give better results at higher masses. Paremeterized NN
fails to give significant improvement with respect to simple/complex Neural Networks, they
interpolate well except for low masses since they do not interpolate better for low resonance
masses [6].

2.5 Operative Comparison between RStudio and Python

This work has been developed using two tools: RStudio and Python; the first one is widely
used in training courses for graduate students; Python has more potential and is very popular
in this kind of ML activities. In general, the same task is 7-8 times faster in Python than
in RStudio. Comparing 500-trees RF with 300-iterations BDT using AdaBoost, RF is two
times faster than BDT. RStudio is more user-friendly than Python and is used for doing the
first steps in ML.



3 PART II: Application of Generative Models

The standard way of simulating proton-proton collisions implies the following phases: (a)
generation of events, (b) hadronization/fragmentation into particles, and (c) simulation of
particle detection. As billions of events are required to have enough statistics, this process
based on numerical computation becomes very expensive and time-consuming. Deep Gener-
ative Models: a class of machine learning models that aim to generate new data from learned
probability distributions of the provided input, can be an alternative to Monte Carlo traditional
methods for generating simulated events with similar quality at a lower cost.

In this work, we focus on Variational Autoencoders (VAEs), using the well-known β-VAE
and proposing the α-VAE as a new approach. A VAE [9, 10] is a neural network architecture
that compresses the input into a lower dimension representation, known as the latent space,
and decompresses it trying to reconstruct the same input. β-VAEs incorporate regularization
techniques during training in order to prevent overfitting and ensure desirable properties in the
latent space, enabling the generation of new data from arbitrary numbers. The architecture
of a β-VAE is composed of an encoder that compresses the input data as a distribution across
the latent space by outputting two values per dimension in that space: the mean and standard
deviation of a normal distribution. Followed by a decoder which uses information from the
latent space to transform it back into the input dimensions.

The training process can be described as follows: first, the input is encoded into a distri-
bution across the latent space. Then, a point is sampled from that distribution in the latent
space. After that, the sampled point is decoded, the reconstruction loss is computed, and
finally, the error is backpropagated through the network.

The loss function minimized during β-VAE training consists of two components: a recon-
struction term, Lrec, located in the output layer of the decoder, which focuses on improving
the performance of the encoding-decoding process, and a regularisation term LKL, located in
the latent layer, which is proportional to the Kullback-Leibler (KL) divergence and is used
to regularize the structure of the latent space by helping the distributions generated by the
encoder to approximate a standard normal distribution. Therefore, the loss function can be
written as:

LVAE = (1 − β) ∗ Lrec + β ∗ LKL

We propose using this kind of model to generate accurate Monte Carlo events from both
existing Monte Carlo data (the ground truth in our experiments), and random numbers. Dur-
ing our experiments in [11], we found out that this VAE variant did not produce good enough
results after trying different values of the β hyperparameter in both strategies. As expected,
the strategy of using existing events from the ground truth data to generate values for the
latent space by means of the encoder yielded better results than using random numbers.

In order to fix some of the problems that appeared while using β-VAEs, we defined the
α-VAE architecture as a simpler variant of VAEs but with some differences that could yield
better results in some cases. Its main feature is that after encoding the input in the usual
way, we added Gaussian noise with zero mean and standard deviation σ = α to the latent
representation of the input data. This variant does not constraint the values in the latent space
to follow a Gaussian distribution with zero mean and unit variance, leaving the probability
distribution of the latent space as unknown. This avoids the need for the Kullback-Leibler
divergence layer, making this variant very inefficient for generating events from purely ran-
dom numbers. We used this kind of model only for simulating collisions by taking ground
truth data and applying a permutation also coming from a random normal distribution with
the same mean and standard deviation used in the Gaussian noise during the training process.



Figure 2. Histogram of first jet parameters E and ϕ using the β-VAE with β = 0.001.

3.1 Experimentation and Results

Data is provided in one-line-per-event CSV files [10], where each file corresponds to a pro-
cess, and each line contains 3 event-specifiers, followed by the kinematic features for each
object in the event: event ID; process ID; event weight; MET; METphi; obj1,
E1, pt1, eta1, phi1; obj2, E2, pt2, eta2, phi2; . . .

Event ID, process ID and event weight are not used in our experiments. MET is the magni-
tude Emiss

T and METϕ is the azimuth ϕEmiss
T

, both represent the transverse energy and azimuth of
those objects that genuinely escape detection. The object identifiers (obj1, obj2, ...)
are strings identifying detected particles, each one followed by 4 comma-separated values
that specify the features of the particle: full energy (E), transverse momentum (pT ), pseudo-
rapidity (η), and azimuth (ϕ). The ordering of particles inside each event is b-jets, jets, lep-
tons, and photons. Inside each type, they are sorted in descending order according to their
pT . In our experiments with Standard Model events, we used a process which had a large
enough statistics: tt̄, the proton collision that produces two top quarks which decay to other
particles. Regarding New Physics, we decided to train the two models that obtained the best
results among all the executed experiments with a different type of process: stop_02.

As the number and type of detected particles in every simulated event are different, the
architecture has three inputs and three outputs: (a) MET and METϕ, (b) a 2D mask with 19
one-hot vectors indicating detected particles up to a maximum of 19, (c) a 2D array with
shape (19× 4) for the four features of each detected particle. The four features are set to zero
when the mask indicates no particle. We trained our β-VAE for 100 epochs with simulated
data corresponding to the tt̄ process, using categorical crossentropy as the loss function for
the particle type detection (the mask), and the mean squared error for learning object fea-
tures. The tested values for β were {0, 0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 1}. Figure 2 shows the
histograms for energy and azimuth of the first jet obtained with original and simulated data
using a β-VAE with β = 0.001. The first jet is one of the most frequent particles in the original
data, with much more statistics than other particles. That is why we obtained a proper adjust-
ment of uniform distributions, especially with low values of β, and a great adjustment to the
rest of distributions. The adjustment in the case of less frequent particles like the photon is
very poor. We achieved an almost perfect simulation regarding the four particle features of
more frequent particles, as well as for MET and METϕ, for all tested values of β ≤ 0.7.

As a preliminary conclusion, the weight assigned to the Kullback-Leibler divergence in
the loss function of our β-VAE must be significantly lower when compared to the one of
the MSE. We used the same model of this experiment to train and generate events using the
stop_02 process with β = 0.001, obtaining also accurate results (see Figure 3).



Figure 3. Comparative histograms of MET , METphi and parameters E, ϕ, η, and pT of the first jet to
compare the best model of β-VAE and α-VAE with stop_02 events using β = 0.001 and α = 0.2.

α-VAEs used the same three inputs/outputs explained above for β-VAEs. However, α-
VAEs do not limit, as previously explained, the probability distribution of the latent space to
follow a normal distribution with zero mean and unit variance. α-VAEs add Gaussian noise
with µ = 0 and σ = α to the latent space during training and inference. This effectively
replaces the necessity of including the loss based on the KL divergence in the bottleneck
layer. However, as the probability distribution in the latent space is unknown, α-VAEs are
only effectively used to simulate events from existing ones.

We also experimented with an extra component in our models to add variability to the
latent space: Bayesian Gaussian Mixture Models (BGMM) [12], that learned the distribution
of latent representations and generated new samples from those distributions to be used as
input to the decoder. The goal of using BGMMs was to avoid using events from the ground
truth to obtain values for the latent space and can be used in both α- and β-VAEs. BGMMs
took a high training time and the obtained results were not useful to be used for the goal
of this work, so this approach was discarded. The results using the α-VAE with no BGMM
were very accurate and showed that this version of VAE has great potential when generating
events from already existing ones, obtaining, in some cases better results than the β-VAE.
We also decided to use the model of this experiment to train and generate events using the
stop_02 process with α = 0.2, obtaining consistent and accurate results with a type of process
different than the one used when designing the model (see Figure 3).

4 Conclusions and perspectives

This work have two well differentiated parts: In part I: We have addressed an event classi-
fication problem with tt̄ in the final state in order to extract the BSM signal from the SM
background using several ML methods applied to simulated datasets. These methods are:
Decision Trees: BDT, Extra Trees and Random Forest; Neural Networks: Simple, Complex
and Parameterized NN. A complete table is provided for comparison between ML methods.
Complex NN give better classification performance than Decision Trees, except in the case
of low masses of tt̄ resonances. From the point of view of operative comparison, Python is
faster but RStudio provides a more didactic framework.



Regarding the second part, from the results obtained with α- and β-VAEs, we can con-
clude that the approaches based on these architectures obtain accurate results for those parti-
cles that have large enough statistics, especially the leading particles. However, these network
architectures are not able to cope with the particle types that appear at a lower frequency. Our
results presented here were obtained using ground truth data. When using purely random
values for the latent space (i.e., skipping the encoder) the results were poor even for the lead-
ing jets and b-jets. This is a first approach to the problem using these methodologies with
promising results. We are refining the methods already used and testing alternative methods.
Additionally, more research is needed using this kind of VAEs to obtain consistent and robust
results when generating events from purely random values in the latent space.

This work was partially supported by MICINN under grant PID2019-104301RB-C21 and
by Generalitat Valenciana with the GenT Programme, Spain.
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