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Abstract. The Belle II experiment situated at the SuperKEKB energy-
asymmetric e+e− collider began operation in 2019. It has since recorded half
of the data collected by its predecessor, and reached a world record instanta-
neous luminosity of 4.7 × 1034 cm−2s−1. For distinguishing decays with miss-
ing energy from background events at Belle II, the residual calorimeter energy
measured by the electromagnetic calorimeter is an important quantity. Ideally,
calorimeter clusters due to beam backgrounds and fake photons should be ex-
cluded when the residual calorimeter energy is calculated, so identifying them
during the analysis process is key. We present two new boosted decision tree
classifiers that have been trained to identify such clusters at Belle II and distin-
guish them from real photons originating from collision events at the interaction
point. We provide results from their application to the B → D∗ℓν decay mode,
and show that the distribution of residual calorimeter energy for signal events is
significantly improved.

1 Introduction

The Belle II detector is situated at SuperKEKB which is an asymmetric e+e− collider at the
KEK laboratory in Tsukuba, Japan [1] [2]. Collisions started in 2019, and since then 428
fb−1 of data has been recorded. SuperKEKB is built to collide positrons and electrons at
energies of 4 and 7 GeV respectively. These energies are tuned to ensure that the centre of
mass energy

√
s matches the Υ(4S) rest mass of 10.58 GeV/c2 [2] [3]. Once created at the

interaction point, the Υ(4S) decays almost exclusively into a pair of B mesons (denoted as
BB). The Belle II detector is used to detect particles emitted from these collisions, with the
sub-detectors designed to achieve a cylindrical geometry that yields a near-4π solid angle
coverage. The Belle II experiment is particularly useful at identifying B decays with missing
energy-momentum signatures due to (1) the relatively clean environment and (2) the known
initial state provided by e+e− collisions. These features allow the energy-momentum of neu-
trinos or other invisible final-state particles to be reconstructed, and in principle allow for a
complete reconstruction of each event. A by-product of this reconstruction is the residual
calorimeter energy, EECL, which is a key variable for many B decay analyses. This variable
is used for signal extraction and background suppression due to its strong signal-background
separation power. The quantity refers to the total energy sum of electromagnetic calorimeter
clusters unaccounted for following the reconstruction of a collision event. For correctly re-
constructed signal events, EECL peaks at 0 GeV [4], while for background events, the EECL
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distribution broadens and peaks at higher values. Within the landscape of current Belle II
analyses, EECL is vital for several high priority measurements such as R(D(∗)), the |Vub| and
|Vcb| elements of the CKM matrix, and the branching fractions of B → Kνν and B → τντ.
The use of a quantity like EECL is not specific to B Factories, and can be easily extended to
any detector that can achieve full reconstruction through an electromagnetic calorimeter with
close to 4π coverage such as BES-III, KLOE or SND.

To increase the separation power of EECL, ensuring a strong peak at 0 GeV for the signal
distribution is imperative. In practice this is difficult as contributions from energy deposits
in the electromagnetic calorimeter created by beam background processes, or calorimeter
energy deposits that are split into multiple clusters during the reconstruction process, also
referred to as fake photons, will contribute to EECL. Such contributions will affect properly
reconstructed signal events, making the distribution appear more background-like, i.e. they
acquire a broad nonzero peak. This dilutes the separation power of EECL and degrades the
precision of measurements with missing energy at Belle II. It is therefore imperative that
these beam background clusters and fake photons are identified and suppressed to allow for
a “clean” signal EECL distribution.

2 The Belle II Detector
The Belle II detector consists of cylindrical layers that comprise a magnetic spectrometer,
electromagnetic calorimeter and muon detector. A superconducting solenoid provides a 1.5
T magnetic field that envelops the former two layers. A complete description of the Belle
II detector and its sub-detectors is given in [1], with a diagram of the detector provided
in figure 1. A detailed discussion of the electromagnetic calorimeter, from which EECL is
derived, is given in Sect. 2.1.

Figure 1: A diagram of Belle II and its various sub-detectors. Credit: Belle II Collaboration.

2.1 Electromagnetic Calorimeter

The electromagnetic calorimeter covers an acceptance region of 12.4◦–155.1◦ in the polar
angle with respect to the beam pipe, with two 1◦ gaps between the barrel and endcaps lo-



cated at 31.8◦ and 129.7◦. It comprises 8736 CsI(Tl) crystals, with 6624 of these crystals
located in the barrel, and 2112 located in the endcaps. The thallium doping in the crystal
structure helps to increase the light output of the crystals. Each crystal has a trapezoidal
geometry with a length of 30 cm and a square cross-section averaging 6 x 6 cm2. At the
rear of each crystal, two photodiodies 10 x 20 mm2 in size are attached for scintillation light
detection. Preamplifiers provide independent output signals from the photodioides of each
crystal to an external shaper board where the signal is digitised by field-programmable gate
arrays (FPGA). From this digitised signal, the amplitude and the time of the waveform can
be extracted, and for crystals with energy above 50 MeV, the waveforms are recorded offline
for pulse shape analysis [5].

Adjacent crystals with significant energy are grouped to form a cluster using a clustering
algorithm [2]. During reconstruction, tracks of charged final state particles are extrapolated to
the electromagnetic calorimeter, and matched to corresponding clusters, with all unmatched
clusters reconstructed as photon candidates [6]. A limitation of the clustering algorithm is the
potential to reconstruct fake photons. This arises when a particle leaves an energy deposit in
multiple calorimeter crystals that are then incorrectly divided into multiple clusters, some of
which remain unmatched and are thus reconstructed as photons. An example of where this
occurs is for low momentum particles with a long trajectory at a shallow angle to the surface
of the calorimeter. For such particles, the extended chain of crystals with deposited energy
can lead to the incorrect subdivision of crystals into multiple clusters, or matching failures
between the track and corresponding cluster. Hadronic showers are another common source
of fake photons due to their irregularly shaped and dispersed energy deposits.

The aim of this study is to distinguish calorimeter clusters created by true photons from
the collision event (hereafter referred to as signal photons), as opposed to clusters recon-
structed as fake photons, or caused by beam background processes such as beam-gas, Tou-
schek or radiative Bhabha scattering [7].

3 FastBDT Architecture

A multivariate analysis approach was chosen for the identification of fake photons and beam
background clusters to allow for the information from various cluster-related variables to
be used in combination. The classifier chosen was the FastBDT as it has been specifically
optimised to handle the substantial amount and type of data that exists in particle physics [8].
The architecture of the FastBDT classifier consists of a cache-optimised stochastic gradient
boosted decision tree [8]. Such architectures are robust against overfitting, and help ensure
minimal correlations between the weak learners which maximizes performance when the
individual learners are aggregated. The main hyperparameters for the architecture are the
number of trees in the ensemble, the maximum depth of each weak learner, and the shrinkage
parameter for regularisation. Hyperparameter tuning was performed for the number of trees
and maximum depth as the FastBDT classifier shows great variability in performance over
a range of values for these hyperparameters [8]. Shrinkage was only tuned if overfitting is
observed. Built into to the architecture is an estimation of the importance of each feature used
in the classifier, which is calculated using the total information gain achieved by each feature
across all weak learners in the ensemble. To compare the performance between classifiers
during hyperparameter tuning, the binary cross-entropy loss function (also called log-loss)
was used. This is defined as

Llog = −(y log(p) + (1 − y) log(1 − p)) (1)

where y ∈ {0, 1} is the true label of a given sample, and p is the probability of the given
sample being in class 1 as determined by the classifier [9]. The smaller the log-loss, the better



the predictions made by the model. In addition to the log-loss, the area under the receiver
operating characteristic curves (AUC) was also used as a measure of classifier performance.
The higher the AUC, the more separated the classes are, with an AUC of 1 indicating that a
perfect separation has been achieved by the classifier.

4 Data Samples

Signal, beam background and fake photons were all selected from photon candidates recon-
structed from simulated B0B0 events with simulated beam background processes overlaid
across all events. A detailed description of the background simulation can be found in [7].
All considered photon candidates were required have a minimum cluster energy of 0.05 GeV
and a polar angle between 17◦ and 150◦ to match the acceptance of the central drift chamber
[1]. Additionally, the sum of crystal weights in the photon cluster was required to be more
than 1.5. For non-overlapping clusters, this sum equals the total number of crystals in the
cluster. For overlapping clusters, a division of the crystal energy occurs between the clusters
leading to a non-integer value of the crystal weight sum. Clusters were classified using infor-
mation from the Monte Carlo generators used to create the simulated data. The Monte Carlo
generators retain information about the energy deposited by individual particles in individual
crystals, and then calorimeter clusters. This allows clusters whose energy is predominantly
from a single particle to be matched to that particle in the simulation. Signal photons were
defined using a cut which ensures the photon has been correctly reconstructed from the col-
lision event. To select beam background and fake photon clusters, the following procedure
was used:

1. Any cluster that is matched to a particle descended from the fundamental e+e− collision
(e.g. B– or D–decay daughters, e+e− → qq̄ fragmentation products, initial- and final-
state radiation) is rejected.

2. For clusters passing this step, the total energy in the cluster due to particles descended
from the e+e− collision is summed.

3. Clusters where this sum ≥ 0.053 GeV are classified as fake photons.

4. Clusters where this sum ≤ 0.025 GeV are classified as beam background clusters.

The thresholds in steps 3 and 4 were determined by studying distributions from various Monte
Carlo samples, with and without hadronic tracks, and with and without overlaid beam back-
ground. In the case of both the beam background and fake photon classifiers, class 1 refers to
signal photons, while class 0 signifies either beam background clusters or fake photons. For
the photons that remain for each simulated sample following the aforementioned cuts, hold-
out was implemented so that feature selection and hyperparameter tuning could be performed
without biasing the test data. The ratio of the split between the training, validation and test
data was 60:20:20.

5 Classifier Features and Hyperparameter Selection

Feature selection for the beam background and fake photon classifiers was performed by
first collating a pool of cluster-related variables that demonstrated some level of separation
between signal photons and beam background clusters or fake photons. From this pool,
features that demonstrated a high importance score were selected. Redundant features were
identified through both their importance scores and correlation matrices. A list of features



that were selected for the beam background and fake photon classifiers are given below. For
the beam background classifier, features 1–5 were used. The fake photon classifier uses all
the listed features. Distributions of the features 1, 4 and 5 are presented in figure 3 as they
are the most important across the two classifiers.

1. The estimated energy of the photon which produced the cluster.

2. The polar angle (with respect to the beam pipe) of the cluster.

3. The output of a separate classifier that uses eleven of the Zernike moments of a cluster
to identify the shape of energy distributions as belonging to hadronic particles (class 0)
or photons (class 1).

4. The output of a separate classifier that uses pulse shape information from activated
electromagnetic calorimeter crystals to distinguish between hadronic showers (class 0)
and electromagnetic showers (class 1) [5].

5. The difference in timing t − t0 between the time of the collision at the interaction point
t0 and the cluster time t

6. The lateral energy distribution of the cluster

S =
∑n

i=2 wiEir2
i

(w0E0 + w1E1)r2
0 +
∑n

i=2 wiEir2
i

where r0 ≈ 5 cm, and for crystals sorted in decreasing order of energy (with E0 the
highest), the wi and Ei are the weight and energy respectively of crystal i, and ri is the
distance from crystal i to a projection of the cluster onto a plane perpendicular to the
photon trajectory [10]

7. The distance (in cm) between the cluster and its closest particle track (this is mea-
sured using the point of closest approach for the particle track extrapolated through the
electromagnetic calorimeter)

Following feature selection, hyperparameter tuning for both classifiers was performed for
the number of trees and the maximum depth of each weak learner. A simple grid search was
conducted for the following values: number of trees ∈ [100, 1000] in steps of 100; maximum
depth ∈ [1, 6] in steps of 1. The log-loss values for each pairing was compared between
the training and validation data sets to check for overfitting. The shrinkage parameter was
decreased for the value pairings where overfitting was observed, with only minimal improve-
ments seen. The hyperparameters chosen were number of trees = 100, and maximum depth
= 3 for the beam background classifier, and number of trees = 300, and maximum depth = 3
for the fake photon classifier. For each classifier, a shrinkage value of 0.1 was used.

6 Results and Application To B0 → D∗−ℓ+ν

A final training of each classifier was done on the training and validation data sets combined,
and using the optimal hyperparameters found in Sect. 5. The AUC obtained from the final
training (test) of each classifier was 0.998 (0.998) for the beam background classifier, and
0.943 (0.944) for the fake photon classifier. The log-loss scores obtained from the final train-
ing (test) of each classifier was 0.0557 (0.0560) for the beam background classifier, and 0.290
(0.291) for the fake photon classifier. Distributions of the classifier output following the final
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Figure 2: Distributions of the three most important features for signal photons, fake photons
and beam background clusters. The cluster time and output of the pulse shape discrimina-
tion MVA are the most important for the beam background classifier, while the latter and the
cluster-to-track distance are the two most important for the fake photon classifier. All distri-
butions are normalised to 1.

training and application to the test data is provided in figure 3. To determine the impact of
the beam background and fake photon classifiers on EECL, the classifiers were applied to a
B0 → D∗−ℓ+ν (ℓ = e, µ) analysis. Simulated samples of Υ(4S) events overlaid with simulated
beam background processes are used. The classifier output cuts tested were an output greater
than 0.6 for the beam background classifier, and an output greater than 0.7 for the fake photon
classifier. Distributions for EECL before and after these classifier cuts are given in figure 4.

As can be readily seen from figure 4a, true B0 → D∗−ℓ+νℓ events do not show a peak at 0
GeV despite being properly reconstructed. This is largely due to the presence of beam back-
ground and fake photon clusters, and the broadness of the distribution limits the separation
power between signal and background events, thus decreasing the power of EECL for back-
ground rejection. The resulting impact of the classifiers on the EECL distribution is shown
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Figure 3: Distributions of the classifier outputs for the beam background classifier in (a) and
the fake photon classifier in (b). All distributions are independently normalised to 1.

(a) Before classifier cuts (b) After classifier cuts

Figure 4: The EECL distributions for B0 → D∗−ℓνℓ events after a cut of greater than 0.6 on the
output of the beam background classifier, and a cut of greater than 0.7 on the output of the
fake photon classifier. The simulated samples are decomposed into the true B0 → D∗−ℓ+νℓ
events, combinatorial background (incorrectly reconstructed B0B0 events), B+B− background
and continuum background.

in Figure 4b. As can be seen, usage of the classifiers produces a signal distribution that is
significantly shifted to lower EECL values, with a strong peak at EECL ≈ 0 which is the de-
sired performance. The result is an EECL distribution that has an improved discrimination
between signal and background events due to the difference in shape. To quantify this im-
provement, the signal yield S from data for B0 → D∗−ℓ+ν is determined via a single toy fit to
the EECL < 0.8 GeV region. For the fit, only two templates are considered: signal, and back-
ground (which includes combinatorial, B+B− and continuum). The signal significance S/σS

is calculated where σS is the uncertainty of the fitted yield. A fit to the EECL distribution in
figure 4a gives S/σS = 4.10 while a fit to the distribution in figure 4b gives S/σS = 10.08,



which demonstrates a clear improvement in the shape of EECL for signal-background separa-
tion, and the resulting increased sensitivity following the usage of the classifiers.

7 Conclusion

In these proceedings, new FastBDT classifiers built to identify beam background clusters and
fake photons, and separate them from signal photons, were presented. Various features con-
taining information on the timing, energy distribution, scintillation pulse shape and location
of clusters in the electromagnetic calorimeter were considered. For each classifier, feature
selection followed by hyperparameter tuning using holdout was performed. The result of this
were high performing classifiers, that gave high AUC scores and strong separation between
beam background clusters, fake photons and signal photons. Upon applying the classifiers to
the B0 → D∗−ℓ+νℓ analysis, substantial improvements were seen in the distributions of resid-
ual calorimeter energy EECL. In particular, clear peaks at EECL ≈ 0 are seen for signal, and the
result is an improved EECL that provides an even greater signal-background separation. Due
to this, multiple missing energy decay analyses at Belle II are successfully employing these
classifiers to significantly reduce their backgrounds, and improve their signal significance.
Additional studies have demonstrated that these classifiers are robust against higher beam
background levels, which is important as SuperKEKB looks to ramp up its instantaneous
luminosity in the coming years.
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