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Abstract. BESIII is designed to study physics in the τ-charm energy region
utilizing the high luminosity BEPCII. For collision physics experiments like the
BESIII experiment, particle identification (PID) is one of the most important
and commonly used tools for physics analysis. The effective µ/π identification
performance is of great significance for most of BESIII physics analysis. How-
ever, due to the close masses of these two particles, as well as the intrinsic cor-
relation between multiple detector information, traditional methods at BESIII
is facing challenges in µ/π identification. In recent decades, machine learning
(ML) techniques have been rapidly developed and have shown successful ap-
plications in HEP experiments. The PID based on ML provides powerful capa-
bility of combining more detection information from all sub-detectors with the
data-driven approach. In this article, targeting at the µ/π identification problem
at the BESIII experiment, we have developed a new PID algorithm based on the
gradient boosted decision tree (BDT) model. Preliminary results show that the
XGBoost classifier provides obviously higher discrimination power than tradi-
tional methods. In addition, based on the substantial amount of high-quality
data taken by the BESIII detector, a method of evaluating and suppressing the
systematical error of the ML model is also introduced, which is critical for ap-
plying the model to physics studies.
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1 Introduction

The Beijing Spectrometer III (BESIII) [1] is a HEP detector running in the τ-charm energy
region at the Beijing Electron-Positron Collider II (BEPCII) [2]. BESIII is aimed to study
physics topics such as the quantum chromodynamics (QCD), the weak interaction, and prop-
erties of quarks and gluons, etc.

Particle identification (PID) [3], i.e., the ability to discriminate between different particle
species produced during the collision, plays a crucial role in most BESIII physics analysis.
Excellent PID capability is often the crucial item to be considered in most BESIII physics
analysis. Good µ/π separation is required for precision fD/ fDs measurements, where fD and
fDs are the decay constant of D and Ds mesons. Excellent electron identification will help
to improve the accuracy of the CKM elements |Vcs| and |Vcd |. The identification of hadronic
(π/K/p) particles is a commonly used tool in BESIII physics analysis. Due to the intrinsic
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Figure 1: The BESIII spectrometer layout Figure 2: The traditional µ particle
identification efficiency in the BESIII

experiment

correlations between variables, traditional PID methods, such as the the maximum likelihood
method [3, 4] is facing big challenges in complex PID tasks, since the µ/π separation power
decreases in certain angle and momentum ranges at BESIII (as shown in Figure 2).

With the rapid development of artificial intelligence and machine learning (ML) tech-
niques, they are becoming increasingly popular in the HEP field over the past decades. In
HEP experiments, ML techniques are opening up new possibilities and have shown promis-
ing results. For the PID problem, a number of successful examples have emerged over the
last decade, usually with higher accuracy and efficiency compared with traditional methods
[5–7]. Among these examples, one of the most popular approaches is the BDT model which
is able to provide good performance.

In this paper, a µ/π classifier is developed for the BESIII experiment based on the BDT
model implemented with XGBoost library. The rest of this paper is organized as following.
In Section 2, a brief introduction to the basic methodology in this work is presented. In
Section 3, we present the data sample used in this work, as well as the feature selection
and model tuning processes. Section 4 shows the performance of the classifier, as well as
discusses the way on how the systematical errors are evaluated and suppressed, which is
critical for applying the model to physics studies. Finally, Section 5 gives the summary and
outlook of this work.

2 Methodology

2.1 Algorithms and models for machine learning

2.1.1 Boosted decision tree

Decision tree [8] is a ML model based on a hierarchical tree structure, mostly used to solve
regression or classification problems. Each decision tree consists of the root node, the deci-
sion nodes, branches, splitting criterion as basic elements [9, 10]. The basic working principle
of decision trees is testing features at the root node then assigning the data to a child node re-
cursively. Since the feature engineering is crucial for the performance, the information Gain
or Gini Index are commonly used as criteria for selecting input features. Information Gain
can be expressed as equation 1 [11]:

Gain(A) = In f o(A) − In f o_A(D). (1)



Ross Quinlan’s ID3 and C4.5 [12] are examples of information Gain-based calculations.
Gini Index is a metric used to measure of impurity/purity of an attribute in a dataset. It

can be calculated by using the following formula [10]:

Gini Index = 1 −
n∑

j=1

p2
j , (2)

the p j denotes the probability and it is utilized in the process of constructing a decision tree
through the employment of the classification and regression tree (CART) [13] supervised
learning algorithm.

The Boosting algorithm [14] is an integrated method used to improve the accuracy of
learning algorithms. The basic idea is to integrate multiple weak classifiers into a strong
classifier according to a certain weighting ratio, which can significantly improve the accuracy
of the final results.

2.1.2 Extreme gradient boosting decision tree

Boosting is a broad family of algorithms that includes Adaboost, XGBoost (one of the BDT
implementations), and others. XGBoost is an optimized and efficient algorithm that is known
for its speed, scalability, and ability to handle large dataset [15–17].

XGBoost was developed and launched by Tianqi Chen et al. in 2016 [18], which is a
tree integration model that uses CART as the base learner. XGBoost enhances the traditional
gradient boosting algorithm by incorporating regularization techniques, parallel processing,
and tree pruning to improve performance and reduce overfitting. For a dataset containing
n samples of m-dimensional features D = {(xi, yi)} (|D| = n, xi ∈ R

m, yi ∈ R), the output
predicted by XGBoost can be expressed as the following equation:

ŷi = ϕ(xi) =
K∑

k=1

fk(xi), fk ∈ F ,

F = f (x) = ωq(x), (3)

where fk represents the k-th CART, and each fk corresponds to an independent tree structure
q. The predicted value of the CART for the sample outcome ωq(x). In addition, K represents
the total number of classification and regression trees set in the model. The objective function
to be optimized is :

L(t) =

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω( ft). (4)

Formally, yi represents the predicted value of the i-th instance at the t-th iteration. To mini-
mize the objective function, ft needs to be added. The regularization term, denoted as Ω( ft)
in equation 4, is also required. This term is calculated using equation 5:

Ω( ft) = γT +
1
2
λ

T∑
j=1

ω2
j . (5)

which is used to control the variance of the fit and in turn controls the flexibility of the learning
task. By adding a regularization term to smooth the final learning weights, overfitting can be
avoided. Here, γ and λ represent the coefficients of the penalty term, T is the total number
of leaf nodes for the t-th tree, and ω j is the output score of the j-th leaf node on the t-th tree,
where j ranges from 1 to T .



2.2 Evaluation of systematic error

Given the data sample used to train the classifier is generated based on Monte-Carlo (MC)
simulation, the difference between MC data and real data is the major source of systematic
errors of the model. Since the systematic errors is critical for physics studies, cross validation
between MC and real data is necessary. In this study, we perform a cross validation by
collecting the high-quality real data generated by the realistic detector response to estimate
the systematic errors, then comparing PID efficiency between the MC and real data test sets.
The systematic error is defined as:

∆ε =
ε(Data) − ε(MC)

ε(MC)
, (6)

where ε(MC) and ε(Data) denote PID efficiencies obtained from the MC and real data test
sets, respectively. By evaluating the bias when dealing with different test sets (MC samples
or data samples), the generalization ability of the classifier could also be understood.

3 Data sample

3.1 Data sample

To train and validate the classifier, a substantial amount of data samples are selected from MC
simulation, as well as from real data collected by the detector. All the data is reconstructed
based on the BESIII offline software system (BOSS) [19].

The µ and π single particle MC samples are used as the training set. To reduce potential
bias, we ensure that the distribution of momentum and incident angle (cos(θ)) in the single
particle MC samples is flat, guaranteeing that the PID performance does not rely on the
momentum or incident angle. The momentum of the single particle MC samples ranges from
0.1 to 1.5 GeV/c, while theta is from 0.5 to 2.6 rad. The total number of µ/π particles in the
MC data set is 128,000 for each type of particle (with a balanced number of π±/µ± particles).
The training, validation and test sets are randomly divided at a ratio of 8:1:1.

Besides the MC data set, we also selected high purity of µ and π particles from real
data as the cross validation data set to evaluate the differences between simulated and real
data. The µ and π particles are selected from multiple well-studied decay channels, such as
e+e− → J/ψ→ γµ+µ− and J/ψ→ π+π−π0 → π+π−γγ. With very strict selection criteria, the
purity of the µ and π samples reach 97.97% and 99.37%, respectively. In addition, 100,000
pions with momentum from 0.2 to 0.4 GeV/c and 100,000 muons with momentum from 1.4
to 1.5 GeV/c are selected as the secondary validation dataset based on the decay channel
ψ(2S ) → π+π−J/ψ → π+π−µ+µ− (the purity of µ and π particles reaches 99.19% with the
standard selection criteria).

3.2 Features selection

The BESIII experiment is composed of several sub-detectors, some of which measure particle
properties that can be used for identification. Multiple sub-systems of BESIII detector can
provide PID information, including a main drift chamber (MDC), a Time-of-Flight counter
(TOF), a CsI(Tl) electromagnetic calorimeter (EMC), and a muon counter (MUC), from the
inner layer to the outter layer.

• The ionization energy loss of charged tracks per unit pathlength in the MDC (dE/dx).

• The particle travel time measured by TOF detector.



Figure 3: The optimized results of XGBoost classifier hyper-parameters.

• The information of the electromagnetic showers in the EMC, e.g., spatial coordinates of a
reconstructed shower, the energy depositions of the seed crystal (Eseed), the energy deposi-
tion reconstructed by 3 × 3 crystal array (E3×3) and 5 × 5 crystal array (E5×5).

• Hit pattern in the MUC.

(a) (b)

Figure 4: (a) The learning curve during the training process. (b) Classification score distribu-
tion.

3.3 BDT model tuning

In order to obtain the best combination of the hyper-parameters of the BDT model (number
of weak classifiers, nestimators and the max depth of each classifier, maxdepth), a grid search is
performed via a three-fold cross validation [20]. According to the results shown in Figure 3,



the maxdepth of 7 and nestimators of 400 are chosen as the optimal combination of the hyper-
parameters.

The learning curve of the optimised model is shown in Figure 4a, indicating that the
model converges as expected and do not appear to over-fit the training set very much.

4 Performance and error estimation

4.1 PID efficiency

To evaluate the performance of the XGBoost classifier, we compare the signal efficiency and
the background efficiency of µ and π particles, with the traditional method developed within
the BOSS system. To get a fair comparison, the same MC data test set is used for both
XGBoost classifier and the traditional PID software. As shown in Figure 5, it is obvious that
the XGBoost classifier outperforms the traditional method in the aspect of signal efficiency
and background efficiency for particles in most momentum and incident angle ranges.

(a) (b)

Figure 5: Comparison of the µ signal and background efficiency between the XGBoost clas-
sifier and the traditional method. (a) Efficiency as a function of momentum. (b) Efficiency as
function of cos(θ) (the incident angle).

4.2 Cross validation between different test sets

To further validate the classifier, a secondary test set (MC and real data samples from different
decay channels in Section 3.1) is used as a cross-validation. The µ and π discrimination
efficiencies on the MC and real data test sets from the two decay channels are compared.
Figure 6 shows the µ and π signal efficiency on the MC data test sets of two decay channels.
The difference is low between the two test sets indicates that the classifier is not significantly
influenced by variations in the momentum spectrum. It shows that the XGBoost classifier
behaves relatively stable across different decay channels and is in particular important as a
common tool for different physics studies.

4.3 Cross validation between different MC and real data test sets

To evaluate the systematic error caused by the difference between simulated and real detector
response, the performance of the XGBoost classifier on the MC and real data sample is com-
pared. According to the comparison results shown in Figure 7, the discrepancies between the



MC and the real data are within a range of 50%, which is relatively small. This demonstrates
that the generalization ability of the classifier is suitable for actual physics studies.

5 Conclusion

In the BESIII experiments, the precise separation of charged particles directly affects the out-
comes of our experiments. After considering a large amount of experimental data and the
challenges associated with identifying µ/π particles, this work develops a µ and π identifica-
tion classifier at BESIII based on machine learning algorithm.

(a) (b)

Figure 6: µ/π signal efficiency with the XGBoost classifier of two different test sets. (a) π
signal efficiency. (b) µ signal efficiency.

(a) (b)

Figure 7: Error estimation.

In this work, the µ and π classifier based on the BDT model is aimed at boosting perfor-
mance of various physics studies in the BESIII experiment. To maximize the discrimination
power and exploit the physics potential of the BESIII detector, the model utilizes information
collected by multiple sub-systems, including the dE/dx measurement from MDC, the time of
flight, EMC shower shapes , as well as the response of the muon detector.

By comparing with the traditional maximum likelihood method, we find strong evidence
that the BDT model outperforms the traditional method, providing a significantly stronger



discrimination power between µ and π particles. To evaluate the systematic errors of the clas-
sifier, high quality control samples are carefully selected from the J/ψ data, and the difference
between MC simulation sample and real data is evaluated. The results show that the BDT
model has a good generalization ability, making it reliable for physics studies.
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