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Abstract. The findable, accessible, interoperable, and reusable (FAIR) data
principles serve as a framework for examining, evaluating, and improving data
sharing to advance scientific endeavors. There is an emerging trend to adapt
these principles for machine learning models—algorithms that learn from data
without specific coding—and, more generally, AI models, due to AI’s swiftly
growing impact on scientific and engineering sectors. In this paper, we pro-
pose a practical definition of the FAIR principles for AI models and provide a
template program for their adoption. We exemplify this strategy with an imple-
mentation from high-energy physics, where a graph neural network is employed
to detect Higgs bosons decaying into two bottom quarks.

1 Introduction

Machine learning, a prominent branch of artificial intelligence, has significantly influenced
experimental high energy physics (HEP). For instance, ML played a pivotal role in the 2012
discovery of the Higgs boson [1, 2] and in real-time identification of specific events amidst
millions of background occurrences at the CERN Large Hadron Collider (LHC) [3, 4]. To
maximize the impact and utility of such AI models, it’s recommended to adopt FAIR prin-
ciples, ensuring they are findable, accessible, interoperable, and reusable. These principles,
initially crafted for scientific datasets [5], have been adapted for research software [6–9] and
other areas, including AI tool development [10, 11]. However, applying FAIR principles to
AI models presents challenges due to the unique nature of AI models. To address this, we
propose a definition of FAIR principles specifically for AI models, aiming to improve re-
search reusability and reproducibility. We also outline a method to streamline the creation
and release of FAIR AI models.
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2 Methods

2.1 FAIR principles for AI models

Researchers have explored applying FAIR principles to research software [6–9]. However,
creating machine learning models involves various digital components, from software and
data to tools and diverse hardware. Depending on the goal, AI models can be adjusted for
speed, parallel operations, or hardware compatibility using different software tools. For
accurate replication and reuse, it’s vital to detail the entire development journey of the model.
To use the AI models on new, possibly raw data, clear instructions for data handling are
necessary.

Practically, AI models are often developed in platforms like Scikit-learn [12], Tensor-
Flow [13], PyTorch [14], or ONNX [15] and saved as files. The storage format, whether
hardware-specific or general, can influence the behavior and results of the model. Preparation
steps, crucial to the performance of the model, might be in separate scripts or within the
model. While there is a push to share such codes on platforms like GitHub, many lack
essential details, making replication hard [16–18]. This has led to AI reproducibility
challenges [17, 19]. Considering these points, we offer a definition for a FAIR AI model
in line with the original FAIR data principles [5] for AI in Table 1. In brief, (F) the
model and its associated metadata are easy to find for both humans and machines, (A) the
model and its metadata are retrievable via standardized protocols, (I) the model interop-
erates with other models, data, and/or software, and (R) the model is both usable and reusable.

For an ML model to meet FAIR standards, its training dataset must also comply with
these guidelines and community standards due to its role in the development of the model.
We have detailed FAIR AI principles, influenced by the Research Data Alliance’s FAIR4RS
Working Group, and shared with the RDA’s FAIR4ML group [6–8, 20, 21]. These principles
are foundational for FAIR models, but ensuring a model is shareable and adaptable may
require more. Reproducibility is challenged by backend optimizations, with frameworks like
PyTorch and ONNX introducing potential output variations even on the same hardware [22].
Given hardware and precision variations, we interpret reproducibility as achieving broadly
consistent results, allowing slight individual data variations.

2.2 Cookiecutter4fair: FAIR AI project template

Software templates can encourage best practices. One example is Cookiecutter Data Sci-
ence [23], which is tailored for data science projects. It offers a logical and somewhat stan-
dardized yet adaptable project framework on GitHub for executing and disseminating data
science tasks. Inspired by this, we developed a variant named cookiecutter4fair [24],
which includes extra functionalities to support our FAIR principles.

2.2.1 Usage

Users can initiate a new FAIR AI project using the command cookiecutter
https://github.com/FAIR4HEP/cookiecutter4fair command that references a
GitHub-hosted template. This process prompts users for various project details, then creates
a template as depicted in Fig. 1.

The repository’s questions can be adjusted in the cookiecutter.json file, and the
Makefile offers various project commands, emphasizing that analysis operations form a



Table 1. The suggested FAIR guidelines for fully trained AI models that are used for inference solely.
Derived from the original FAIR principles, this adaptation begins by substituting “data" with “AI
models" and then further modifies based on the distinct features and applications of AI models
compared to datasets. To accommodate retraining scenarios, the definition of the “Reusability”

principle within these guidelines can be further refined.

F: The AI model, and its associated metadata, are easy to find for both humans and machines.

F1. The AI model is assigned a globally unique and persistent identifier.
F2. The AI model is described with rich metadata.
F3. Metadata clearly and explicitly include the identifier of the AI model they describe.
F4. Metadata and the AI model are registered or indexed in a searchable resource.

A: The AI model, and its metadata, are retrievable via standardized protocols.

A1. The AI model is retrievable by its identifier using a standardized communications protocol.

A1.1. The protocol is open, free, and universally implementable.
A1.2. The protocol allows for an authentication and authorization procedure, where necessary.

A2. Metadata are accessible, even when the AI model is no longer available.

I: The AI model interoperates with other models, data, and/or software by exchanging data and/or
metadata, and/or through interaction via application programming interfaces (APIs), described
through standards.

I1. The AI model reads, writes and exchanges data in a way that meets domain-relevant community
standards.

I2. The AI model includes qualified references to other objects, including the (FAIR) data used to
train the model.

R: The AI model is both usable (for inference) and reusable (can be understood, built upon, or
incorporated into other models and/or software).

R1. The AI model is described with a plurality of accurate and relevant attributes.

R1.1. The AI model is given a clear and accessible license.
R1.2. The AI model is associated with detailed provenance, such as information about the input

data preparation and training process.

R2. The AI model includes qualified references to other models and/or software, such as dependen-
cies.

R3. The AI model meets domain-relevant community standards.

directed acyclic graph (DAG). If data is on Zenodo [25], it can be downloaded via the
zenodo_get command line utility [26]. A Dockerfile sets up the Python environment
with the dependencies specified in requirements.txt, and once built, the Docker image
can be interactively run. Additional scripts offer more adaptability, and post-creation, users
can structure their code and documentation to align with FAIR principles.

2.2.2 Considerations and mapping to FAIR principles

Findability: AI models can be uploaded to GitHub, GitLab, BitBucket, or more specialized
hubs like DLHub [27, 28], OpenML [29], MLCommons [30], AI Model Share [31], and



.

LICENSE.................................................License for reusing code

Makefile ............... Makefile with commands like make data or make train

CITATION.cff....................................Standardized citation metadata

README.md ............... Top-level README for developers using this project

data

processed....................The final, canonical data sets for modeling

raw................................Original, FAIR, and immutable data dump

Dockerfile..........................For building a containerized environment

docs...........................................Sphinx project for documentation

models ......... Trained and serialized models, model predictions, or model

summaries

notebooks.......................................................Jupyter notebooks

references....Data dictionaries, manuals, and other explanatory materials

reports..........................Generated analysis as HTML, PDF, LaTeX, etc

figures ..................... Generated graphics and figures for reporting

requirements.txt....Dependencies for reproducing the analysis environment

setup.py..............Makes project pip installable so src can be imported

src ........................................ Source code for use in this project

__init__.py.......................................Makes src a Python module

data...................................Scripts to download or generate data

make_dataset.py

features............Scripts to turn raw data into features for modeling

build_features.py

models.......................Scripts to train models and make predictions

predict_model.py

train_model.py

visualization.............................Scripts to create visualizations

visualize.py

tox.ini.........................................Tox file with settings

Figure 1. The directory tree of the cookiecutter4fair v1.0.0 [24] project template. src contains
the main Python source code. For generating documentation, the docs subdirectory includes a Sphinx
project.

Hugging Face [32] for sharing models. Using Zenodo [25] can generate a DOI for the
repository and store metadata, and Hugging Face offers DOIs for datasets and models [33].

Accessibility: AI models can be retrieved with an identifier of the standardized protocol.
Model repositories should adopt this server-side protocol, while community tools in lan-
guages like Python, R, and other programming language should support its client side.

Interoperability: For effective interoperability, it is essential that the metadata of the AI
model comprehensively details its design, training, and inputs, encompassing any prepro-
cessing for the raw data and its origin. Utilizing standardized APIs, like those from DLHub,
HuggingFace, or NVIDIA Triton Server [34], can further facilitate machine interoperability.



Reusability: For effective reusability, it is crucial to outline the necessary software, tools,
and dependencies for effortlessly deploying an AI model to derive insights from datasets
in any computing setting. This approach should be independent of specific hardware.
Achieving this can be facilitated by container platforms like Docker [35] or Apptainer [36].

Table 2 illustrates how the features of the cookiecutter4fairAI project template align
with the suggested FAIR principles for AI models. Many features, like generating a license
file and Dockerfile, are fully automated. Some, like model uploading to Zenodo, are semi-
automated; for instance, the GitHub-Zenodo bridge can auto-generate updated entries for
new GitHub releases. The template also fills a CITATION.cff file [37] with citation data for
Zenodo’s use. However, certain tasks, like uploading the model to DLHub, still need manual
intervention.

Table 2. Correlation between the current capabilities of the coookiecutter4fair AI project
template and our proposed FAIR principles for AI models. The ∗ symbol denotes processes that are

not entirely automated yet and need additional manual intervention.

Principle GitHub
repository

Zenodo
upload

DLHub
upload

Docker or
Apptainer image

License

Findable ✓
Accessible ✓ ∗

Interoperable ✓
Reusable ∗ ✓ ✓

3 A FAIR implementation: H→ bb interaction network

The interaction network (IN) [38], initially designed to study physical dynamics, was tailored
to jet classification. Here, we showcase a FAIR implementation of the interaction network
for differentiating H → bb jets from quantum chromodynamics (QCD) multijet events [39].
Examining the H → bb decay rate and its deviation from the standard model could hint at
undiscovered physics.

The FAIR H → bb interaction network model was created on GitHub and hosted
on Zenodo [40]. The GitHub repository was initialized using the template described in
Section 2.2. The repository contains a script that processes raw data from the CERN Open
Data portal [41] and scripts for training and predictions to replicate published outcomes,
all organized in a Makefile as a DAG. Figure 2 shows the IN model architecture. For a
detailed description of the model and chosen hyperparameters, see Moreno et al. [39].
The repository also features two Dockerfiles for reproducible CPU or GPU model training
environments, with prebuilt images available on DockerHub. Automated documentation,
training workflows, Docker container building, and continuous integration are facilitated
through GitHub Actions. Additionally, each new software release on GitHub is assigned a
DOI via the Zenodo-GitHub bridge.

The trained ML model has also been made publicly accessible [42] and reusable for in-
ference through DLHub [27, 43], which offers a custom software development kit (SDK)
called dlhub_sdk, enabling users to package and maintain a trained model with all essen-
tial dependencies. After publishing a model, DLHub provides a dedicated API for remote
inference tasks using funcX, a system that efficiently deploys tasks across various computing
environments [44]. The model deployment process is streamlined using a notebook template
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Figure 2. Model architecture and the dataflow in the IN model [39]. The hyperparameters of the model
and the dimensions of the input data are provided in Moreno et al. [39].

provided by DLHub developers, which guides users in implementing inference code, declar-
ing dependencies, and adding metadata. Once completed, these templates can be submitted to
DLHub developers for further processing. The published model comes with comprehensive
details, including a DOI, author list, and usage instructions. Additionally, DLHub’s SDK lets
users delve into the metadata of the model, detailing its creation and functionalities.

4 Conclusion

We have proposed a practical definition of FAIR principles tailored for machine learning
(ML) and broader artificial intelligence (AI) models. To encourage compliance with these
guidelines, we have provided a FAIR AI project template and showcased its application using
a model that distinguishes H→ bb events from QCD events.
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