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Abstract. With the High-Luminosity upgrade of the LHC, the number of simul-
taneous proton-proton collisions will be increased to up to 200. This requires
an extensive overhaul of the detector systems. For the ATLAS Liquid Argon
calorimeter electronics, 556 high performance FPGAs will be installed to re-
construct the energy for all 182 468 cells at the LHC bunch crossing frequency
of 40 MHz. However, the current digital filter used for energy reconstruction
(optimal filter) decreases in performance under these high pileup conditions.
We demonstrate, that small recurrent or convolutional neural networks can out-
perform the optimal filter. Prototype implementations of the respective infer-
ence code in VHDL show, that the use of these networks on FPGAs is feasible
and the resulting firmware fits onto the planned Intel Agilex devices. The full
design is capable of processing 384 detector cells per FPGA, by combining
parallel instances of the firmware with time division multiplexing.

1 Introduction

The Liquid Argon (LAr) calorimeters of the ATLAS detector [1] are a set of sampling
calorimeters covering a pseudorapidity range of |η| < 4.9, where the electromagnetic barrel
and end-cap regions span |η| < 3.2. During Run 4 from 2029 onwards, the High-Luminosity
upgrade of the Large Hadron Collider (LHC) [2] will increase the mean number of simulta-
neous proton-proton collisions ⟨µ⟩ observed by ATLAS to 140-200. Since a single LAr signal
pulse has a duration of about 25 bunch crossings (BC), the increased pileup is especially chal-
lenging for the LAr calorimeters due to the resulting overlap. Combined with the increased
trigger rate and a new trigger scheme that allows the acceptance of events from consecutive
bunch crossings, this requires a replacement of most of the LAr readout electronics.

The upgraded readout foresees an analog pulse shaping, amplification and analog-to-
digital conversion on the detector for two gains in parallel. The front-end connects to the
off-detector electronics through optical fibers, where 556 Intel Agilex-40 series FPGAs will
be installed to allow the energy reconstruction at the full granularity of 182 468 cells at the
ADC frequency of 40 MHz.

For the digital signal reconstruction, the current readout uses an optimal filter [3]. This
is a linear filter that is optimized to reconstruct the energy deposited in one detector cell,
accounting for noise and pileup. It is usually used with five coefficients multiplied with
five pulse samples, which equals the field of view. However, the optimal filter struggles
with overlapping signals. With the increased pileup and revised trigger scheme, this will
∗e-mail: johann_christoph.voigt@tu-dresden.de



become more common and new algorithms for the digital energy reconstruction are under
consideration.

2 Network training and architecture

It has been shown previously, that both recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) can outperform the optimal filter especially in the case of over-
lapping signals [4]. This paper further explores these two artificial neural network (ANN)
architectures as potential replacements for the optimal filter.

The ANNs are trained using the Keras [5] API to Tensorflow on signal-enriched simulated
detector pulses generated by the AREUS [6] software. This allows the use of the true energy
deposit as a training target and during evaluation.

The first approach uses a vanilla RNN architecture with a sliding input window. As
Figure 1 illustrates, the network consists of five RNN cells. Each cell uses the ADC value
from one time step of the time series as input. The network always operates on input data from
only one detector cell. The number of RNN cells is equal to the field of view. This means
that the network can see a time window of five bunch crossings. The RNN cells are linked
by an internal state vector of dimension 8. In total the network contains 304 multiplications.
The limited field of view is an important property to make sure that the network has a finite
impulse response. Otherwise, any erroneous input data could have long term effects on the
output.
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Figure 1. Recurrent neural network (RNN)
using a sliding window approach. The network
consists of five vanilla RNN cells in a chain, that
passes an internal vector of dimension 8 along.
The energy extraction happens through a dense
neuron at the last cell. Each RNN cell uses one
out of the five consecutive input samples. The
network is computed at every bunch crossing on
the current input window. [7]

The other approach uses CNNs, which operate on the continuous time data coming from
the ADC of one detector cell as well. The simpler internal structure compared to the RNNs
allows for a larger field of view of approximately 20 bunch crossings. The first CNN archi-
tecture under consideration contains two convolutional layers (2-Conv) for the energy recon-
struction, as can be seen in Figure 2. A rectified linear unit (ReLU) is used as the activation
function. The second layer utilizes dilation in order to increase the field of view without
increasing the number of parameters.
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Figure 2. Top: Architecture of a convo-
lutional neural network (CNN) with two
layers. The data flow goes from bottom
to top. The input sequence is first pro-
cessed by a convolutional layer with di-
lation 1, which densely screens its input
samples. The second convolutional layer
with dilation 3 sparsely screens the out-
put of the previous layer. This results in
a larger total field of view of 22 bunch
crossings without increasing the number
of parameters.
Bottom: Architecture of a CNN with four
layers and tagging part. The input se-
quence is first processed by the tagging
part of the network in the bottom half of
the figure. After a concatenation layer,
the tag output and the input sequence are
processed by the energy reconstruction
part of the ANN. The total field of view of
this network incorporates 20 bunch cross-
ings. [7]

The second CNN architecture (4-Conv) uses two additional layers with the sigmoid acti-
vation function at the bottom to tag the undershoot of a previous pulse. The top two layers are
again responsible for the energy reconstruction, based on the output from the tagging layers
concatenated with the ADC sequence as input. Both networks are constrained to 100 total
parameters, therefore the energy reconstruction layers are smaller when using tagging layers.

3 Energy reconstruction performance

Figure 3 shows the energy reconstruction of the optimal filter and a CNN for a challenging
example sequence. The optimal filter cannot distinguish between the two very close pulses
around bunch crossing 5. At bunch crossing 65, an energy deposit happens within the under-
shoot of a previous pulse. The optimal filter, with its limited knowledge of the past, cannot
correct for this temporary shift in baseline and underestimates the deposited energy. The
ANN can distinguish the pulses and properly recovers the full peak within the undershoot.

The performance of the ANNs compared to the optimal filter has been previously demon-
strated [4]. For the CNNs, a new study based on updated input samples is presented here. This
new sample set includes six characteristic cells from the barrel and electromagnetic end-cap
region of the detector. Furthermore, it uses higher energies up to 80 % of the high-gain pre-
amplifier saturation for the artificial signals that are injected on top of the pileup. This leads
to a higher required dynamic range of the networks.

Because the energy reconstruction of overlapping pulses has been identified as a critical
case, this is further evaluated in Figure 4. The histograms show the deviation of the recon-
structed energy over the distance between two consecutive high energy deposits. For the
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Figure 3. Top: Display of a sample sequence (black) of an EMB Middle cell at (η, ϕ) = (0.5125,
0.0125), together with the true transverse momentum magnitude ET (blue) and the optimal filtering
(OF) with maximum finder output (red) as a function of the BC counter.
Bottom: Similar display but with the output of the 2-Conv CNN (red). The sequence was simulated with
AREUS, using ⟨µ⟩ = 140. True energies include in-time pile-up. The CNN shows an improvement in
detecting hits coming in close succession. The two hits with a gap of 2 around bunch crossing 5 are well
reconstructed by the CNN. That is not the case for the OF, which detects only a single peak. Around
BC 65 a hit follows within the undershoot of a previous hit. While the OF underestimates its energy,
the CNN reconstructs it much better. [7]

optimal filter, the energy reconstruction mostly breaks down for pulses closer than 20 bunch
crossings. In the case of the CNN, the performance also suffers in this region, but the shape
of the histogram is still more symmetric and centered around 0 GeV. The higher density of
deposits shows that more pulses are recognized overall compared to the optimal filter. The
structure seen in both plots below −0.5 GeV is an artifact of the energy cut applied to suppress
low energies and contains all the pulses that were reconstructed as 0 GeV.

Eventually, the goal is to use the networks for the energy reconstruction of all 182 000
detector cells. In order to evaluate whether the same architecture is suitable for the entire
detector, six characteristic cells of the barrel and electromagnetic end-cap region have been
chosen and the CNN training repeated.

Figure 5 shows the difference between reconstructed and true energy over the distance to
the preceding pulse in the input sequence in units of bunch crossings for the six representative
cells. The general shape of the histogram is similar for all subplots. The principle approach
and network architecture can therefore be used for the barrel and end-cap regions. A strategy
on how to handle the training for the full detector still needs to be developed, however.

4 FPGA implementation

4.1 Recurrent neural networks (RNNs)

Initially, hls4ml [8] was used to prototype the FPGA implementation for the RNNs. However,
time division multiplexing is required to handle the planned 384 detector cells on one FPGA.
The ADC samples the data at a frequency of only 40 MHz, while the FPGA supports much



0 10 20 30 40 50 60 70 80 90 100
Gap [BC]

1.0

0.5

0.0

0.5

1.0

1.5

Epr
ed

T
Etru

e
T

 [G
eV

]
AREUS  Simulation
EMB Middle ( , ) = (0.5125, 0.0125)

= 140, Etrue
T > 0.5 GeV 

OF with MaxFinder

0.3

0.6

0.9

1.2

1.5

1.8

2.1

N
or

m
al

iz
ed

 to
 u

ni
ty

×10 3

0 10 20 30 40 50 60 70 80 90 100
Gap [BC]

1.0

0.5

0.0

0.5

1.0

1.5

Epr
ed

T
Etru

e
T

 [G
eV

]

AREUS  Simulation
EMB Middle ( , ) = (0.5125, 0.0125)

= 140, Etrue
T > 0.5 GeV 

4-Conv CNN with Tagging

0.3

0.6

0.9

1.2

1.5

1.8

2.1

N
or

m
al

iz
ed

 to
 u

ni
ty

×10 3

Figure 4. Difference of the reconstructed and true transverse momentum magnitude (ET) as a function
of the gap, i.e., the distance in units of bunch crossings (BC), between two consecutive energy deposits
for the optimal filtering (OF) algorithm and a subsequent maximum finder (left) and the 4-Conv convo-
lutional neural network (CNN) with tagging (right). The inputs are sampled pulses obtained from the
simulation of an EMB Middle LAr cell (η = 0.5125 and ϕ = 0.0125) with AREUS using ⟨µ⟩ = 140.
The structure at Epred

T − Etrue
T = −0.5 GeV arises, since only deposits with Etrue

T (including in-time pile-
up) above 0.5 GeV are considered. [7]
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Figure 5. Difference of the reconstructed and true transverse momentum magnitude (ET) as a function
of the gap, i.e., the distance in units of bunch crossings (BC), between two consecutive energy deposits
for the 2-Conv CNN algorithm for a set of representative detector cells. Inputs to the CNN are sampled
pulses obtained from the AREUS simulation using ⟨µ⟩ = 140. The structure at Epred

T −Etrue
T = −0.5 GeV

arises, since only deposits with Etrue
T (including in-time pile-up) above 0.5 GeV are considered. [7]

faster processing. The multiplexing concept allows one instance of the RNN firmware to run
at a multiple of the ADC frequency and continuously cycle through the input from a fixed
number of detector cells.

To better customize the firmware and support multiplexing, the RNN inference was im-
plemented using the Intel high level synthesis (HLS) [10] language directly. This implemen-
tation has been used to study the effects of rounding in different parts of the network. The
FPGA works most efficiently with 18 bit fixed point numbers, while the training happens in
32 bit floating point numbers. Different rounding or truncation strategies have been evaluated.
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obtained from the fixed point firmware and the floating point software model for rounding at different
stages of the network. The default is truncation, the dashed graphs signify the distribution resulting
from rounding of intermediary results (I), weights (W) and input/output data (D).
Right: Placement constraints for one RNN firmware instance. The five RNN cells and the dense layer
for extraction are placed to have access to the DSPs and on-device memory and create short signal paths
between connected cells. [9]

The most impactful position to apply rounding instead of truncation are the network weights
as can be seen in Figure 6 (left) [9]. This can be done in software during pre-processing
and therefore has no influence on the FPGA resource requirements. Rounding the input and
output data, as well as intermediate results between layers, to 18 bit has a reduced influence
compared to the weights.

Finally, a low level implementation directly in VHDL has been created based on the ex-
perience gained from the HLS version to further reduce the resource utilization. This allows
more optimizations, like the reuse of common results between RNN cells or custom place-
ment constraints as can be seen in Figure 6 (right). The latter allows to define a particular area
on the FPGA lattice for every instance of the RNN firmware. Inside this area, the placement
of the different RNN cells can be fixed. This makes sure that the signal paths between the
cells are short and consistent between multiple parallel instances of the firmware block.

This also allows incremental compilation, where the network is compiled multiple times
to improve the signal timings. At each iteration, the parts that meet the timing constraints can
be retained, while the problematic regions are recompiled.

4.2 Convolutional neural networks (CNN)

The CNN inference code has been implemented in VHDL directly. This supports multiplex-
ing targeting a factor of 12. To process the full number of 384 cells, a total of 33 parallel
instances is required. While 32 instances would be sufficient, the input data arrives via three
optical receivers. It is therefore beneficial to follow this symmetry, even if parts of the CNN
firmware are not fully utilized this way.

The firmware has a modular structure, where the number of layers and the parameters for
each layer can be configured at compile time. The basic building block of the CNN is one
filter. The CNN structure can be constructed out of parallel filters per layer and then stacking
layers on top of each other.



Table 1. FPGA resource estimates for the Intel Stratix 10 (reference 1SG280HU2F50E2VG) and
Agilex (reference AGIC040R39A2E2VR0) devices.

FPGA Network Multiplex. Detector cells fmax ALMs DSPs

Stratix-10

RNN (HLS) 10 370 393 MHz 90 % 100 %
RNN (VHDL) 14 392 561 MHz 18 % 66 %
2-Conv CNN 12 396 415 MHz 8 % 28 %
4-Conv CNN 12 396 481 MHz 18 % 27 %

Agilex 2-Conv CNN 12 396 539 MHz 4 % 13 %
4-Conv CNN 12 396 549 MHz 9 % 12 %

The weights are stored in memory blocks inside the FPGA for each filter individually.
This reduces the required signal paths and helps to meet the clock frequency requirement.
Significant performance increases, especially for the multiplexed case, have been achieved
by storing the network weights in the order required by the multiplier (DSP) chain and not
the logical order as it is produced in the network training. This reduces the required logic for
routing the weights to the correct DSP significantly without any loss in functionality. It is
only required to reorder the weights in software, before loading them onto the FPGA.

The multiplexing logic itself has been redesigned compared to the version previously
introduced in [4]. For this particular CNN use case, the multiplexing is functionally similar to
a dilation. Using this similarity, the processing can be done on one unified input data stream,
where every n-th input sample belongs to the same detector cell with a multiplexing factor of
n. This reduces the overhead from any switching logic, as only the weights need to be cycled
to make sure that the input data from one cell is always multiplied by the matching weights.
Only a slight change in the network architecture is required, by effectively multiplying the
dilation of every layer by the multiplexing factor.

It is planned to compile the firmware of the network once and use it for all 556 FPGAs.
This means that the network weights will be loaded only afterwards and are not available at
compile time. Therefore, it is not possible to use pruning as an optimization technique.

4.3 Compilation results

Table 1 shows the FPGA resource estimates as a percentage of total available resources for
the Intel Stratix-10 and Agilex 40-series devices. The resource estimates for the different
network architectures are obtained using the Intel Quartus Prime software [10]. The num-
ber of detector cells shown is the maximum number of parallel input streams the respective
firmware has been compiled for, where 384 are required. This is achieved by using the shown
multiplexing factor and parallel instances of the base firmware block. The maximum clock
frequency reported by Intel Quartus can be compared to the product of the multiplexing fac-
tor and 40 MHz to determine whether the timing constraints are met. Adaptive logic modules
(ALMs) are the general purpose logic elements of the FPGA and therefore required for most
tasks performed on the FPGA, while the DSPs are specialized multiplication units.

It can be observed that the RNNs do not fit the Stratix-10 even in the optimized HLS
version, while the VHDL implementation has sufficiently low resource requirements. The
maximum clock frequency is high enough to allow an increased multiplexing factor of 14.

The CNNs still do not consistently reach the required 480 MHz on the Stratix-10. The
ALM and DSP consumption is even lower than for the RNNs. The difference between the
results for the 2-Conv CNN compared to the 4-Conv CNN with tagging layers illustrates, that
the sigmoid activation function used by the tagging layers requires a high number of ALMs.



First compilation results for the Intel Agilex show a significant improvement in the max-
imum clock frequency such that this is no longer problematic. The resource utilization is
reduced to approximately half compared to the Stratix-10. This leaves plenty of space for the
other firmware blocks of the project to be placed as well with sufficient margins.

5 Conclusion

Both RNNs and CNNs are shown to be capable of outperforming the optimal filter especially
in case of overlapping signals. The results for the CNNs show that the dynamic range of
the networks can be extended to cover larger energies compared to previous studies and the
approach works for different detector regions. The next step is to demonstrate the effect on
higher level object reconstruction, like electrons, photons and jets.

The firmware implementation for both architectures has evolved considerably and now
supports placing the full firmware required for processing 384 detector cells on one FPGA.
This has been achieved by implementing the RNNs directly in VHDL and redesigning the
multiplexing logic of the CNNs. First tests on FPGA hardware are ongoing to verify the
firmware outside of simulations.
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