
HyperTrack : Neural Combinatorics for High Energy Physics

Mikael Mieskolainen1,2,∗

1High Energy Physics, Blackett Laboratory, Imperial College London, SW7 2AZ, United Kingdom
2I-X, Imperial College London, W12 0BZ, United Kingdom

Abstract. Combinatorial inverse problems in high energy physics span enor-
mous algorithmic challenges. This work presents a new deep learning driven
clustering algorithm that utilizes a space-time non-local trainable graph con-
structor, a graph neural network, and a set transformer. The model is trained
with loss functions at the graph node, edge and object level, including con-
trastive learning and meta-supervision. The algorithm can be applied to prob-
lems such as charged particle tracking, calorimetry, pile-up discrimination, jet
physics, and beyond. We showcase the effectiveness of this cutting-edge AI
approach through particle tracking simulations. The code is available online.

1 Introduction

Charged particle track reconstruction is a demanding combinatorial inverse problem encoun-
tered in high energy and nuclear physics. It is also the problem which inspired the devel-
opment of the very first computer vision method, the Hough transform. The future high-
luminosity LHC, where each event generates O(104) charged particles and O(105) corre-
sponding detector hits due to a mean pile-up of 200 simultaneous pp-collisions, calls for
improved inference solutions in terms of memory, latency, and physics performance. We for-
mulate this as a deep learned clustering problem. Earlier approaches include a discretized
integral transform (Hough), template matching, recursive filtering (combinatorial Kalman fil-
ter, the de-facto method), spin-glass neural networks (Hopfield like), graph neural networks
(edge prediction) and combinatorial optimization via adiabatic quantum computing. [1]

Our HyperTrack algorithm is built using a machine learned voxelized graph constructor
and a graph neural network (GNN) which operates on the graph. Finally, a greedy or Monte
Carlo random walk on the graph is seeding a set transformer (TRF), which provides the final
output. This approach differs from a GNN based local or sequential tracking in clear way; we
use space-time non-local clustering, not space-time local doublet or triplet node linking per
se. In terms of clustering itself, our approach differs from classical methods such as density
based algorithms in a crucial way – contrastive and meta-supervised deep learning is used to
learn how to cluster.

The problem is formulated in a generic way to address also closely related HEP problems,
such as unified tracking and calorimetric object reconstruction, pile-up decomposition (hard
vs soft and N-vertex way) and high-level physics analysis clustering problems. Furthermore,
exotic particle trajectories beyond typical helix tracks in a uniform magnetic field pose no
obstacle, because the underlying dynamics is learned from the training sample.
∗e-mail: m.mieskolainen@imperial.ac.uk

VD Input: data point vectors {xi}

1) Geometric distance search against a pre-trained voxel centroid set {ck}

2) Look-up construction via a pre-trained C-matrix→ an adjacency Â
GNN Input: {xi}, Â
1) Message-passing layer iterations→ latent node embeddings {zi}

2) Evaluate 2-point MLPρ → edge prediction scores between nodes {pi j}

Subgraphs Input: Â, {pi j}

1) Apply a global edge threshold cut→ a sparsified adjacency Ã
2) Connected components (WCC) search→ a set of disconnected subgraphs {Ãk}

3) Sort Ãk according to their node multiplicity for batching efficiency
Transformer Input: {xi}, {zi}, {Ãk}, {pi j}

While unclustered nodes in subgraphs, do
1) Find pivotal nodes per subgraph, skip nodes if max trials exceeded
2) Batch (tensorize) nodes and pivotal nodes over all non-empty subgraphs
3) Apply the transformer architecture in parallel to the batch tensor
4) Apply a mask threshold cut to the transformer output, get passing nodes
5) Collect cluster candidates, apply failure logic and remove clustered nodes

Table 1: HyperTrack algorithm overview.

2 Algorithm

The full algorithm consists of (replaceable) modules, summarized in Table 1. Explicit de-
scription of the algorithm can be found in the public code1.

2.1 Voxel-Dynamics (VD) adjacency

The graph neural network message passing requires a graph adjacency sparse enough, given
a finite memory-latency budget, but which contains enough information for efficient re-
construction. For this we introduce a machine learned discretized estimator called Voxel-
Dynamics, which by construction has a pile-up invariant positive (negative) edge efficiency
for a given fixed voxelization. Its training consists of two parts, adaptive Voronoi voxeliza-
tion of the 3D (or 4D) hit space to a number of V voxels and a very sparse V × V boolean
matrix C describing the connectivity (dynamics) of the hits associated with voxels. It en-
codes the geometric "boolean bundles" of tracks passing through a voxel to another voxel,
as observed during training. The voxelization is done via K-means algorithm using a high
performance faiss library [2] in the training phase and via exact ℓ2-distance search during
inference. Faster search algorithms are also available based on polysemous codes and quan-
tization techniques. Training the C-matrix is a straightforward "forward" look-up problem
achieved by iterating through the entire training sample once. The trained matrix produces a
fixed ROC point, which can be controlled by adjusting parameters such as V and the size of
the training sample, or by optimizing the structure of the matrix afterward. This optimization
could be based on the training phase integer counts per Cuv matrix element and an additional
algorithm. Typically, the matrix C is very sparse for sufficiently large values of V .

For the ground truth target adjacency, options such as equations of motions based eom
or its multi-hop extension, cricket, can be feasible choices e.g. for sequential tracking.
However, a space-time non-local hyper connectivity is chosen here because tracks are highly
non-local objects, also because it provides natural "topological protection" against missing

1github.com/mieskolainen/hypertrack (MIT license)

https://github.com/mieskolainen/hypertrack

1
2

3
4

5

(a) eom-topology

1
2

3
4

5

(b) cricket-topology

1
2

3
4

5

(c) hyper-topology

Figure 1: Different graph adjacency target topologies: eom ⊂ cricket ⊂ hyper for a single
track (object), where its nodes 1 − 5 for eom and cricket are either time-ordered or or-
dered according to the minimal spanning tree. The hyper-topology is fully space-time order
invariant. Self-edges are not visualized but are included.

nodes and noise. The topologies are illustrated in Fig. 1. The idea behind hyper connectivity
is overcompleteness. All possible edges are spanned between all the nodes of the hypothetical
cluster object. A task for the neural part is to do reduction of the fake edges. Including self-
edges in the graph allows the GNN message passing to discriminate between physical and
non-cluster associated (noise) hits.

The inference phase can be fully parallelized. For each hit index i, the corresponding
voxel index u is searched using ℓ2-distance between the hit coordinate and the voxel centroid,
and resulting hits per voxel are stored. Then, if Cuv = 1 for a pair of non-empty voxels (u, v),
the associated real space hits (i, j) will obtain an adjacency value of Âi j = 1. The sparsity
structure mitigates the apparently high worst-case time complexity of nested look-ups. The
VD estimator has a special formal property when applied to the tracking problem; in the limit
V → ∞ and infinite training statistics, the tracks could be reconstructed near perfectly. With
a finite voxelization and training sample, fake edges are being generated and some real edges
are lost. A key observable to consider is the mean node degree ⟨d⟩ in the resulting graph. In
the tracking problem, the scaling law is approximately ⟨d⟩ ∝ ⟨µ⟩/V . In essence, to control
the scaling of GNN message passing complexity with an increased number of graph nodes
caused by increasing the mean pile-up ⟨µ⟩, it is necessary to increase the voxel count.

2.2 Graph Neural Network architecture

For the GNN, we use an extension of the EdgeConv [3], which we call SuperEdgeConv. The
k-th message passing iteration is

m(k)
i =

⊕
j∈Ni

MLP(k)
ψ

(
cat
[
h(k)

i ,h(k)
i ⊙ h(k)

j ,h
(k)
j − h(k)

i , e(k)
i j

])
, (1)

h(k+1)
i ← MLP(k)

ϕ

(
cat
[
h(k)

i ,m(k)
i

])
+ h(k)

i , and e(k)
i j = cat

[
⟨h(k)

i ,h(k)
j ⟩, ∥h

(k)
i − h(k)

j ∥,∆i j

]
. (2)

The ⊙ is an element wise (Kronecker) product, explicit edge features ei j include the dot
product and ℓ2-distance, ∆i j = (di − d j)/⟨d⟩ is the normalized node (vertex) degree difference
and the input for the first layer is h(0)

i ≡ xi. The number of message passing layers bounds the
horizon of the receptive field and N iterations can see N+1 hops along the graph. For the track
reconstruction approximately at least 3–4 layers are needed and we use 5 in the experiments.
All MLP models use silu activation function with batch norm layers included and after
the first layer, residual connections (+hi) are included in Eq. 2 to improve the gradient flow.
The choice of the message passing neighbourhood Ni aggregator ⊕, typically permutation

equivariant, can be critical. We choose here the mean aggregator. However, layer wise mixed
aggregators are possible, such as using an adaptive transformer based aggregator for the last
layer due to the costly O(n2) self-attention matrix operations. The choice of the aggregator
can be shown theoretically to be one of the representation power bottlenecks (cf. Weisfeiler-
Lehman graph isomorphism test), depending on the problem graph structure.2

Then after the message passing, GNN layer outputs are fused to obtain for each i-th node
a latent representation

zi = MLPγ
(
cat
[
h(1)

i ,h(2)
i , . . . ,h(K)

i

])
, (3)

which in parallel combines representations at different depths of message passing. The em-
bedding dimensions of z and h are important for handling the combinatorial complexity, and
dim(z) ∼ dim(h) ∼ 64 seems a reasonable compromise between computational resources and
representation power. Finally, the edge (2-point) scores are predicted using

pi j = σ(li j), where li j = MLPρ
(
zi ⊙ z j

)
, (4)

which is invariant under i ↔ j permutation and σ is the sigmoid function. The self-edges
i = j allow this function to learn to discriminate between noise and real hits.

2.3 Subgraphs and pivotal diffusion search

A global edge threshold cut is applied to the GNN edge scores pi j > ce and a weakly con-
nected component (WCC) graph search is done. This gives us a set of subgraphs. The
optimal case would be a "mass gap" situation between positive and negative edges, i.e., no
density overlap between their edge score distributions. With the hyper-target connectivity,
an optimal GNN would make the transformer stage unnecessary. The cut threshold is a hyper-
parameter tuned according to external training metrics or by adapting the cut event-by-event,
e.g., using the expected and obtained mean node degree. Operationally a low cut threshold
postpones clustering for the transformer, whereas a high value makes the transformer operate
as a post-filter. In many clustering problems, a clear topological clustering phase transition,
from a single input graph to well-disconnected subgraphs, should occur when ce ≃ 0.5.

Seeding the transformer based clustering goes as follows. Per subgraph, a random set
of starting nodes is selected. This can be also ordered geometrically, for example in high-
level analysis, the leading transverse momentum nodes could be chosen. Then, by taking
each random node as the starting node, a greedy graph walk proceeds on the subgraph along
the highest log-odd probability log(pi j/(1 − pi j)) edge direction and this is iterated – also
simultaneously filtering out self-edges and previous nodes. The path which corresponds to
the maximal sum of log-odds is chosen and the corresponding nodes are promoted as pivots.
This is essentially greedy directed diffusion on the subgraph. The number pivots is a free
hyperparameter, which is set to three in our experiments. Alternatively, MC random walk
according to a multinomial distribution spanned by the connecting edges, can be done.

After the set of pivotal nodes is found, we re-connect a micrograph, an inclusive fully
connected graph spanned by the nodes which are connected to each pivotal node. This set of
nodes and chosen pivots gives us the input for the transformer. Finally, these sets are batched
(tensorized) over all the subgraphs to execute the transformer in parallel.

2As an alternative design, we include an E(N) group-equivariant architecture, which achieves comparable accu-
racy. A Lorentz group variant can also be easily obtained, especially for high-level analysis problems. An interesting
open problem involves designing a GNN model that has explicit pile-up invariance properties, beyond training or
conditionalizing the model under different luminosity conditions.

2.4 Transformer architecture

A dot-production full attention transformer without positional encoding is used. This model
is naturally permutation equivariant, also known as a set transformer [4]. The core function
of the transformer is a scaled dot-product softmax attention function

Att(Q,K,V) = softmax
(
QKT /

√
d
)

V, (5)

where d is the input dimensionality. Queries Q, keys K and values V are named after a
weak analogy with database models. These are matrices, with data vectors as rows. In most
applications V is set equal to K, which is the case also here. Batched utilization of the
transformer requires boolean tensor masking applied to QKT .

The actual multihead attention transformer is

T = cat[A1, A2, . . . , Ah]WO, where A j = Att(QWQ
j ,KWK

j ,VWV
j), (6)

where WQ
j ,W

K
j ,W

V
j and WO are learnable matrices and j runs over the number of heads

h. The total number of model parameters is the same as with a single head model, but the
vectors are subspace wise split for each attention head computation separately to increase
representation power, then finally concatenated and projected with a matrix WO. Finally,
residual connections, learnable layer normalizations and an MLP are applied

H ← LayerNorm(1)(T + Q) (7)

H ← LayerNorm(2)(MLPT (H) + H). (8)

Dropout regularization unit(s) could be included after the layer normalization. This whole
chain of operations is denoted with MAB(Q,K) operator [4] and a self-attention operator
follows as SAB(X) ≡ MAB(X, X). Adaptive pooling can be done via MAB(S , X), where S is
a set of learnable vectors, but this is not used in the architecture described here.

Based on the obtained performance and complexity of different options, the developed
model is as follows

Encoder: G(pivots) = MLPE(Z(pivots)) (9)

Decoder: D = SABstack
D (MABD(Q = G,K = Gpivots)) (10)

Node score: M = σ(MLPM(D)), (11)

where Z = cat[{zi}, {xi}]. The idea of the encoding stage is to construct an input embedding
G which combines both raw data and GNN processed representation to obtain end-to-end
optimization. In the decoder cross-attention, the key set Gpivots steer the attention towards a
specific cluster if the query set G contains several clusters. That is, the pivots explicitly break
the "selection symmetry" instead of relying on a fully spontaneous breaking. Repeating the
self-attention over a stack of iterations allows to model higher order correlations beyond
pairwise (up to N-point) and we use 4 layers. The node mask predictor MLPM provides a
scalar score per node to belong to the cluster. Finally, a hard cut M > cn is applied with
cn ≃ 0.5, which can be optimized via gradient descent using a sigmoid based soft relaxation
of the heaviside step function or adapted per batch using Fisher’s variance criterion.

2.5 Loss functions

A binary Focal loss is used as the edge prediction loss, which is a prediction distribution
entropy regularized version of the binary cross-entropy

Le = −
1∑
i wi

E∑
n=1

wn

[
yn(1 − pn)γ log(pn) + (1 − yn)pγn log(1 − pn)

]
, (12)

where E is the total number of edges, pn ∈ [0, 1] is the edge score and yn ∈ {0, 1} is the
edge label. We use a regularization parameter γ = 1, emphasizing the harder to classify
edges more than γ = 0 (BCE) and resulting in more well disconnected subgraphs. Integrated
inverse positive-negative edge balance weights wn are used to reweight the loss.

To target the clustering goal explicitly over C true clusters, a contrastive multi-object
edge loss with multiple positive and negative edges is built, inspired by the N-pair loss [5] as

Lc = −
1
⟨n⟩

1∑
i ωi

C∑
k=1

ωk
1

E+k

E+k∑
j=1

log
exp(s+k j/τ)

exp(s+k j/τ) +
∑E−k

n=1 exp(s−kn/τ)
. (13)

The score sets |{s+}| = E+ and |{s−}| = E− for the positive (negative) edges are the GNN edge
logits li j passed through a hyperbolic tangent, with self-edges excluded. A problem specific
cluster weights are denoted with ωk, which are by default ωk ≡ 1. The scale normalization
is ⟨n⟩, the mean of true cluster node multiplicities and the critical hyperparameter τ controls
the dispersion of latent representations, set here to τ = 0.3. Including only edges that exceed
a threshold, pi j > 10−2, regulates the model towards purity. This loss is computationally
intensive and it can be practical to include only a subset of true clusters per event.

The transformer node mask score loss is

Ln = −
1
K

K∑
k=1

1
Nk

Nk∑
j=1

[
yk j(1 − mk j)γ log(mk j) + (1 − yk j)m

γ
k j log(1 − mk j)

]
, (14)

where mk j is the transformer mask predictor score for the j-th node of the k-th estimated
cluster, Nk is the number of nodes in Z (transformer input) and the number of estimated
clusters is K. Meta-supervision is applied to construct targets yk j ∈ {0, 1}. In our scheme, the
dominant ground truth cluster label within the pivotal nodes defines the true class.

The node set loss is used to optimize the final clustering result as

Ls = −
1
N

K∑
k=1

 ∑
j∈Υk∩Yk

mk j −
∑

j∈Υk−Yk

mk j

 , (15)

where the first term is an intersection between the estimate Υk and ground truth Yk node
sets, targeting efficiency and the second term is a set difference, targeting purity. The set Υk

includes nodes which passed the final cluster mask threshold cut and the cluster ground truth
is given by the meta-supervision. N is the total number of data points.

Finally, the total hybrid loss to minimize is L =
∑

i βiLi, where βi are relative strength
hyperparameters and one of them can be set to a constant. We use unoptimized values βe =

βn = βs = 0.2 and βc = 1.0. An open problem is to find a way to balance them automatically.

3 Experiments

As an extensive proof-of-concept, we study the track reconstruction problem. Only the
3D coordinates of the detectors hits x = [x, y, z] are used as an input, without any pre-
transformation. The charge deposit amplitudes could improve the performance, similarly
time-domain information could be incorporated. We use the Kaggle TrackML [6] dataset
of simulated pp-collisions at

√
s = 14 TeV made using Pythia 8 and ACTS fast detector

simulation over η ∈ [−4, 4]. The Poisson average pile-up is ⟨µ⟩ = 200, resulting in around
105 detector hits (nodes) and 104 tracks (clusters). Two simplifications are applied: the track
density is decreased to simulate pile-up of ⟨µ⟩ = (2, 20, 60) and the noise hit fraction (non-
associated hits) is reduced from 15% to 5%. No additional kinematic cuts are made and

0

20000

40000

60000

80000

100000

120000

140000

160000

Co
un

t
category: r0

xy < 10 mm

MC (nhits > 0)
MC (nhits 4)
HyperTrack

10 1 100 101

pT (GeV)

0.00.10.20.30.40.50.60.70.80.91.0

Efficiency
Hit purity
Hit efficiency

0

10000

20000

30000

40000

50000

60000

Co
un

t

category: r0
xy > 10 mm

MC (nhits > 0)
MC (nhits 4)
HyperTrack

10 1 100 101

pT (GeV)

0.00.10.20.30.40.50.60.70.80.91.0

Efficiency
Hit purity
Hit efficiency

Figure 2: Clustering performance for ⟨µ⟩ = 60. The transverse momentum for prompt (<
10 mm) and displaced vertex tracks (> 10 mm), requiring at least 4 hits. The ratios show
efficiency of DMS≥4 matched tracks and the hit set purity & efficiency of the matched tracks.

Kaggle competition hit weights are used in the contrastive loss and evaluating the double
majority score (DMS) values. The dataset contains around 9 × 103 events in total, which we
split into VD training (25%), neural training (60%) and validation-evaluation (15%).

Our hardware includes an NVIDIA V100 with 32 GB of VRAM and an Intel Xeon Gold
6230 with 20 physical cores and 86 GB of RAM. The most important libraries in use are
torch, torch-geometric [7] and faiss [2]. The code implementation is high-level, but
most pure Python functions have been JIT-compiled. The gradient search uses AdamW op-
timizer with a base learning rate of λ = 5 × 10−4 with gradients updated after every event
(batch size 1) and a cosine scheduler (λ/10) with warm restarts every 104 iterations, and we
employ simple transfer learning by continuing the high pile-up training from the low pile-
up model progressively. The transformer training is activated end-to-end once the GNN is
nearly converged. The VD consists of 3 × V ≈ 1.6 M real and V2 ≈ 275 G (0.4 G non-zero)
boolean parameters, when V = 219, which generates around 2 M edges for ⟨µ⟩ = 60. Infer-
ence demands considerably less memory than training. Approximately only 8 GB of VRAM
and 10 GB of RAM are sufficient for ⟨µ⟩ = 60, because we utilize here high voxel count
V and maintain modest depth and width for the neural model, which consists of only 0.3 M
parameters. The inference is technically feasible even for ⟨µ⟩ = 200. Memory constraints
(for training) can be extended by using reduced precision (e.g., BFloat16), model pruning,
memory efficient optimizers, piece-wise training and recent GPUs with 144 GB of VRAM.
The training was executed for a total of approximately 0.5 × 106 iterations.

3.1 Results

The inference accuracy and latency t (in sec) scaling results are summarized in Table 2. The
true and false positive edge efficiencies (TPR, FPR) of the VD stage are denoted as VDϵ+(−)

and evaluated with respect to the hyper-topology ground truth. The GNN edge efficiencies
are with respect to the GNN input adjacency list ground truth labels and the GNN working
point is at the edge cut threshold ce = 0.55 for all scenarios. In terms of latencies, both GNN
and transformer networks utilize the GPU. The rest of the computations are performed on the

⟨µ⟩ VDϵ+ VDϵ− GNNϵ+ GNNϵ− AUC DMS≥4 E P tVD tGNN tWCC tTRF
2 0.97(1) 0.020(2) 0.984(8) 0.001(1) 0.9998(4) 0.94(2) 0.95(2) 0.99(1) 0.0054(8) 0.0075(5) 0.015(3) 0.09(1)
20 0.92(1) 0.0040(2) 0.974(5) 0.0033(4) 0.9993(2) 0.88(1) 0.89(1) 0.96(1) 0.13(2) 0.0089(5) 0.12(1) 0.7(1)
60 0.86(2) 0.00170(4) 0.952(7) 0.0040(2) 0.9983(3) 0.82(2) 0.85(1) 0.94(2) 0.9(2) 0.011(1) 0.57(6) 2.0(3)

Table 2: Inference mean values (and std) for three pile-up scenarios using 103 events, taking into
account both primary and secondary particles. The DMS≥4 represents the double majority score,
E = | estimated ∩ matched | / | simulated ∧ nhits ≥ 4 | is the clustering efficiency and P = | estimated ∩
matched | / | estimated | is the clustering purity. The VD voxel counts are V = (216, 218, 219) per scenario.
Note that the VD edge efficiencies are pile-up invariant when V is fixed.

CPU, including the transformer input processing (subgraph logistics, pivotal search), which
is currently unoptimized and accounts for over 95% of its total processing time tTRF .

Figure 2 shows the physics performance for ⟨µ⟩ = 60. The results demonstrate excel-
lent clustering of prompt tracks, while the challenges arise with low transverse momentum
tracks that exhibit high vertex displacement within the central pseudorapidity region (loop-
ers), originating from long-lived particle decays or secondary interactions with materials such
as gamma conversions γ → e+e−. To improve the true positive edge efficiency VDϵ+ , a larger
training sample is needed for the C-matrix, especially with V = 219. To prioritize latency
over accuracy, it is possible to utilize only the edge cut and WCC search after VD+GNN,
especially for lower pile-up scenarios. Combining VD+GNN+cut with classic density based
clustering is also an option, based on sparse metric distances (1 − pi j) obtained via GNN
scores, which is available in the code using [h]dbscan. By design, the transformer is the
method of choice for meeting the highest efficiency and purity requirements.

4 Conclusions

We introduced a new generic AI-driven clustering algorithm called HyperTrack and demon-
strated its strong performance in charged particle tracking simulations, with pile-up means up
to ⟨µ⟩ = 60, which corresponds to ∼ 3 000 track clusters per event. This fully trainable and
space-time non-local algorithm also allows for simultaneous learning of cluster sub-structure
mechanics and targeting physics-constrained loss functions, capabilities that are beyond the
reach of classical algorithms. In the future, we can end-to-end integrate the cluster (track)
parameter regression directly into the transformer output, investigate hierarchical or recur-
sive and N-point (higher rank) VD, address other learnable clustering problems and explore
quantum computing options such as accelerating the VD with Grover’s search. Additionally,
adaptive sparsification of the cluster ground truth target topology, is an intriguing direction.

Acknowledgements: Thanks to Alex Tapper, Liv Vage and Simon Williams for discussions.
The author is supported by the Schmidt AI in Science fellowship of Schmidt Futures and I-X.

References

[1] X. Ju, D. Murnane, P. Calafiura et al., EPJC 81, 1 (2021)
[2] J. Johnson, M. Douze, H. Jégou, IEEE Transactions on Big Data 7, 535 (2019)
[3] Y. Wang, Y. Sun, Z. Liu et al., TOG 38, 1 (2019)
[4] J. Lee, Y. Lee, J. Kim et al., in ICML (2019), pp. 3744–3753
[5] K. Sohn, in NeurIPS (2016), Vol. 29
[6] S. Amrouche, L. Basara, P. Calafiura et al., The tracking machine learning challenge:

accuracy phase (Springer, 2020)
[7] M. Fey, J.E. Lenssen, arXiv:1903.02428 (2019)

	Introduction
	Algorithm
	Voxel-Dynamics (VD) adjacency
	Graph Neural Network architecture
	Subgraphs and pivotal diffusion search
	Transformer architecture
	Loss functions

	Experiments
	Results

	Conclusions

