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Abstract. Searches for new physics set exclusion limits in parameter spaces of
typically up to 2 dimensions. However, the relevant theory parameter space is
usually of a higher dimension but only a subspace is covered due to the com-
puting time requirements of signal process simulations. An Active Learning
approach is presented to address this limitation. Compared to the usual grid
sampling, it reduces the number of parameter space points for which exclu-
sion limits need to be determined. Hence it allows to extend interpretations
of searches to higher dimensional parameter spaces and therefore to raise their
value, e.g. via the identification of barely excluded subspaces which motivate
dedicated new searches. In an iterative procedure, a Gaussian Process is fit to
excluded signal cross-sections. Within the region close to the exclusion contour
predicted by the Gaussian Process, Poisson disc sampling is used to determine
further parameter space points for which the cross-section limits are determined.
The procedure is aided by a warm-start phase based on computationally inex-
pensive, approximate limit estimates such as total signal cross-sections. The
procedure is applied to a dark matter search on data collected by the ATLAS
detector at the LHC, extending its interpretation from a 2 to a 4-dimensional
parameter space while keeping the computational effort at a low level. The re-
sult is published in two formats: on one hand there is a publication of the Gaus-
sian Process model. On the other hand, a visualization of the full 4-dimensional
contour is presented as a collection of 2-dimensional exclusion contours where
the 2 remaining parameters are chosen by the user.

1 Introduction

Beyond Standard Model (BSM) searches for new physics at the Large Hadronic Collider
(LHC) by the ATLAS Collaboration [1] look for an excess of events over Standard Model
(SM) predictions and barring discovery, seek to exclude highly parameterized models govern-
ing BSM processes subject to constraint from experimental data. The computational demand
for making constraints by estimating exclusion contours is often intractable even for models

∗e-mail: zb609@nyu.edu
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



q

q

χ

χ

b

b

Z ′

Z ′

s

q

q χ

χ

b

b

Z ′

χ
s

Figure 1. Feynman
diagrams of the
production of a dark
Higgs boson s together
with a pair of dark matter
particles χ, mediated by
a Z′ particle which also
interacts with the initial
state quarks.

with reduced parameter sets, forcing searches which further reduce the dimensionality of the
model being interpreted.

Introduced in Ref. [2] as a method for selecting data to add to the training set for a
Machine Learning task, Active Learning (AL) is used here as an efficient strategy for querying
exclusion limits in a high dimensional BSM search. Over a few iterations, small batches
of points are evaluated to obtain upper limits on the cross-section of the BSM signal. A
Gaussian Process (GP) is used to suggest which points should be evaluated for the following
batch. This search, fully detailed in Ref. [3], utilizes a previously preserved analysis with the
RECAST protocol and a computationally cheap exclusion limit estimation technique based
on the SimpleAnalysis framework. Details about RECAST and SimpleAnalysis are available
in Ref. [4] and Ref. [5].

AL is applied here in a search for dark matter produced in association with a SM Higgs
boson that decays into b-quarks. This search covers four dimensions of the parameter space
that was previously limited to two. This proceeding is organized as follows: a description of
the dark matter signal process, the pipelines used for determining exclusion limits based on
RECAST and SimpleAnalysis, how Active Learning is used for this search, and the results.

2 Mono-H(bb̄) Reinterpretation

Motivated by the need to generate mass for dark matter, this search targets a BSM model with
a scalar dark Higgs boson s, a heavy spin-1 neutral Z′ boson and heavy Majorana dark matter
fermions χ, detailed in Ref. [6]. The production of a dark Higgs, which decays into b-quarks,
and χ mediated by the Z′ is the signal of interest here, shown in Figure 1. Sufficiently large
mixing between the SM Higgs boson and the dark Higgs boson leads to the prompt decay of
the dark Higgs, resulting in the coupling of the SM Higgs boson to SM fermions to be the
same for the dark Higgs boson. The BSM parameter space is spanned by the masses of the
dark Higgs, the Z′ and χ and the Z′-χ and Z′-quark couplings: ms, mZ′ , mχ, gχ, and gq. The
dominant background considered is the SM production of Higgs bosons decaying to b-jets
with Z-bosons that decay into neutrinos.

The Mono-H(bb̄) analysis, detailed in Ref. [7], reinterpreted for this search selects events
with the magnitude of missing transverse momentum Emiss

T and at least two b-tagged jets
originating from the decay of B-hadrons. Unlike those originating from the SM Higgs boson,
the selected invariant mass of the b-jet pair originating from the dark Higgs can range from
50–280 GeV. Events belonging in the signal region must have Emiss

T > 150 GeV and not have
charged leptons. The control region is defined orthogonally to the signal region by differing
Emiss

T requirements and requiring one or two leptons in the event. A simultaneous profile-
likelihood fit to the control region and signal region is performed to set a limit on the signal
cross-section.



3 Evaluating Parameter Points

A BSM search takes as input Monte Carlo (MC) samples of background processes, ATLAS
experimental data, and MC samples of the signal at a single parameter setting and outputs
an exclusion limit on the signal cross-section. For this dark Higgs model search, the space
spanned by θ,

θ =
(
mZ′ ,ms,mχ, gχ

)
(1)

is the input and the logarithm of the signal cross-section upper limit,

y B log

σ
Upper Limit
experiment

σtheory

 , (2)

is used to find the exclusion contour output at y = 0. To make fitting the cross-section
contours easier, log is used for linearizing the limits. The gq parameter factors out of the
cross-section σ calculation and is fixed to 0.25 for this search. The map from parameter space
to exclusion limits is approximated using a RECAST based pipeline and SimpleAnalysis
based one, discussed below.

3.1 RECAST Pipeline

An analysis preserved using the RECAST protocol uses archived experimental data and
background estimates and requires a new MC signal sample for its pipeline which follows
these steps:

Job Options Requesting new signal samples begins with creating, validating and reg-
istering python-based configuration files. The files define which MC sample and parameter
setting to use for event generation jobs on the Worldwide LHC Computing Grid (WLCG).
The requester validates the configuration files locally by generating a small fraction of the
total events that will be requested on the WLCG to estimate compute resources needed. Then
registration of the configuration files occurs through an internal review process by system
experts.

MC Production The requester then creates, submits and requests approval for WLCG
jobs to begin running. The WLCG jobs step through event generation, detector simulation
and reconstruct analysis-specific files.

Analysis The final step of the RECAST pipeline is the relatively straightforward run-
ning of analysis jobs on the REANA platform provided by CERN from which the exclusion
limits are extracted. See Ref. [8] for details about REANA.

3.2 SimpleAnalysis Pipeline

The high accuracy of results from querying the RECAST based pipeline comes at a high
computational cost and can involve multiple teams at ATLAS. To address this, an alternate
method called SimpleAnalysis sacrifices some accuracy for a computationally cheaper anal-
ysis that can be run autonomously. SimpleAnalysis substitutes the most demanding steps in
the RECAST pipeline for simplified detector responses, reconstruction and event selections.
Discrepancies in the Emiss

T requirement and matching variable-radius track jets with the large-
radius jets were found between the SimpleAnalysis approach and the full analysis resulting



in differences of up to 20% in the signal selection efficiency. By first estimating the exclusion
contour with SimpleAnalysis, this search was able to build a strategy to query the RECAST
pipeline for even fewer parameter points.

4 Active Learning Strategy

Active Learning can be used to iteratively determine how to query a system for training
data. In the case of BSM searches, the system to query is the computationally expensive full
accuracy pipeline, preserved here with RECAST. For high dimensional searches, the number
of queries to make scales exponentially so being conservative in the number of exclusion
limits to request is necessary. A computationally efficient querying strategy should then only
seek to evaluate points that provide the most information about the exclusion hyper surface.
Each iteration of AL begins with training a GP to estimate the exclusion contour from the
exclusion limits obtained so far. Then the trained GP is used to determine which additional
queries to make. The AL querying strategy seeks to minimize uncertainties of a GP fit to
exclusion limits over parameter space so points will be computed only if they sharpen the
hyper surface. AL terminates when the exclusion contour estimated by the GP is satisfactorily
sharp.

4.1 Gaussian Process

The final output of the AL loop is a trained GP that provides an estimate of the exclusion con-
tour over parameter space. The GP is trained on independent datasets DS A = {(θi, yi

S A)}i=1..p
and DR = {(θi, yi

R)}i=1..q with p being the number of SimpleAnalysis evaluations and q the
number of RECAST evaluations.

The 2-task GP is then defined as(
yS A(θ)
yR(θ′)

)
∼ GP

((
m(θ)
m(θ′)

)
,Σ(θ, θ′)

)
, Σ(θ, θ′) =

(
k11(θ, θ) k12(θ, θ′)
k21(θ, θ′) k22(θ′, θ′)

)
, (3)

where the mean and kernel with hyperparameters are given by

m(θ) = wTθ + b , (4)

ki j(θ, θ′) = k(θ, θ′)κi j + ϵ
2δ(θ, θ′) , δ(θ, θ′) =

1, if θ = θ′

0, else
, (5)

k(θ, θ′) = exp
(
−
||θ − θ′||2

2 l2

)
, and κi j =


σS A if i = j = 1
σR if i = j = 2
σS A−R if i , j

. (6)

The hyperparameters w, b, l, ε, σS A, σR and σS A−R are determined by maximum likelihood
estimation given the observed DS A and DR. The shared mean function between both tasks
and kernel are used by the 2-task GP to learn the correlation betweenDS A andDR regression
tasks from both datasets.

4.2 Acquisition Function

In the context of querying strategies, an efficient approach should seek the most information
about the exclusion contour from minimal queries to the RECAST pipeline. The benefit
of using a GP over another regression method is that the GP has an intrinsic uncertainty



encoded in the kernel k. To leverage this feature of the GP to suggest optimal points to query,
the exclusion probability is introduced:

pexcl (θ) =
∫ 0

−∞

g (y | µ(θ), σ(θ)) dy . (7)

The probability for a point in parameter space to be excluded is modeled from Gaussians g
of exclusion limits y conditional on means µ(θ) and uncertainties σ(θ) in their limit estimates.
To get a direct measure of the uncertainty about the exclusion of a point θ, it is useful to
introduce the exclusion entropy over the exclusion contour:

Hexcl(θ) = −pexcl(θ) log pexcl(θ) − (1 − pexcl(θ)) log (1 − pexcl(θ)) . (8)

This is a direct measure of the uncertainty around the exclusion of a point θ with a min-
imal value at pexcl = 0 and pexcl = 1 and maximum when pexcl = 0.5. Restated then, an
efficient querying strategy will minimize exclusion entropy across the parameter space. This
Maximum Entropy Search (MES) is an extension of the single point search introduced in
Ref. [9]. One drawback of relying on MES for the search is in its strict focus which can lead
to close bunching of suggestions. To address this, a mix of Poisson disc sampling,

P = {θ s.t. ȳexp(θ) − 2ȳ−1σ(θ) < ȳexp(θ) < ȳexp(θ) + 2ȳ+1σ(θ)} (9)

implemented in Ref. [10], with MES was used as the acquisition function for this search:

{θ∗1, ..., θ∗q
} = argmaxtop- q

2
Hexcl(θ) ∪ P . (10)

The Poisson disc sampling is bounded by twice the standard deviation ȳ±1σ(θ) in the
expected limit contour ȳexp(θ). Since RECAST pipeline queries can be executed in parallel,
batches of points are requested at a time rather than serially. Equation 10, selects a batch with
q points where 50% ( q

2 ) are MES points and 50% are from Poisson disc sampling.

4.3 Warm Start

In order for the initial step of the AL loop to start, a batch of queries must already have been
processed which clearly introduces an issue. To address this, computationally inexpensive
SimpleAnalysis derived limits on a regular and fine grid are used to train a separate single task
GP. By calculating the exclusion entropy from this GP, an initial batch of points to evaluate
using RECAST are determined. This warm start step could be informed by even simpler
cross-section based estimates as well. The full algorithm is given in Algorithm 1.



Algorithm 1 Active Learning approach to efficiently obtain 4D exclusion contours
1: Warm start input: SimpleAnalysis dataset DS A, Gaussian Process f , acquisition func-

tion a(θ) Eq. 10
2: Train f onDS A = {(θi, yi

S A)}i=1..q

3: Select initial batch {θ1, ..., θq} from a(θ)
4: Evaluate {θ1, ..., θq} with RECAST to get datasetDR,1 = {(θi, yi

R)}i=1..q
5: Warm start output: DatasetsDS A,DR,1
6: Active Learning input: Initial datasets DS A, DR,1, 2-task Gaussian Process g, acquisi-

tion function a(θ)
7: DR ← DR,1
8: j← 1
9: repeat

10: Train g onDS A andDR

11: Determine Hexcl and stopping condition
12: j← j + 1
13: Select next batch {θ1, ..., θq} j from a(θ)
14: Evaluate {θ1, ..., θq} j with RECAST
15: Add batch {θ1, ..., θq} j and its evaluations toDR

16: until Hexcl is low
17: returnDS A,DR, g
18: Active Learning output: Final datasetsDS A,DR, g

5 Results

The region of parameter space this search investigates is bounded by mZ′ ∈ [500, 5000] GeV,
ms ∈ [50, 150] GeV, mχ ∈ [100, 1200] GeV, gχ ∈ [0.5, 2.0] and gq set to 0.25. While Active
Learning does not require a warm start in general, the multitask GP was informed with 5000
queries of the low-fidelity SimpleAnalyis pipeline to help reduce the number of RECAST
evaluations needed. In each iteration, small batches of 200 queries of the RECAST pipeline
were requested for a total of about 800 queries over 4 iterations until convergence. The full
Run 2 ATLAS dataset was also used for the analysis. The GPyTorch library, introduced in
Ref. [11], was used to fit the multitask GP on a single V100 NVIDIA GPU with 32 GB of
RAM. To estimate the excluded region, the Bayesian Optimization procedure implemented
in the python package excursion was used. See Ref. [12] for details about excursion.

Physics analyses at ATLAS inherently involve multiple steps due to their complex nature
and some searches from the collaboration are implementing automation where feasible. See
Ref. [13] for notable progress towards end-to-end automation. Our search benefited from
improvements in the Job Options and MC Production steps and iteration of the Active Learn-
ing loop only took approximately 1 week to complete. After the final update of the GP, the
contour is sharp enough and the exclusion entropy is low farther away from the contour. The
GP posterior can be sampled at any point in the investigated 4D parameter space to provide
expected and observed limits on the signal cross-section under various parameter settings.
Some 2D slices are provided for visualization in Figure 2.
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Figure 2. Exclusion limits on the mediator mass mZ′ and dark Higgs mass ms where the coupling
gq=0.25 and each slice corresponds to a fixed value for dark matter mass mχ and the coupling gχ detailed
in Ref. [3]. The regions to the left of the contours are excluded. The exclusion limits are determined
by evaluating the multitask GP in a four-dimensional grid. Blank plots are slices where no points were
excluded.

6 Conclusion

In conclusion, this proceeding details how AL was used to set exclusion limits for a dark
Higgs boson model using the full Run 2 dataset collected by the ATLAS detector at the LHC.
This search reinterprets a previous Mono-H(bb̄) dark matter search with a pair of b-jets and
Emiss

T in the final state. As a querying strategy, AL determines which parameter space points
should be evaluated through a pipeline that sets signal strength upper limits. By exploiting
the intrinsic uncertainty of GPs, only evaluations that provide the most information about
the exclusion contour are executed. The inherent latency in iteratively querying the pipeline
was also improved on during this search by taking advantage of the automated production
of simulation samples and utilizing RECAST and REANA for executing the analysis steps.



Exploring whether using total cross-sections may be sufficient for the first task of the GP is
worth investigating, potentially dropping the need to use the SimpleAnalysis framework.
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