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Abstract. Significant progress has been made in applying graph neural net-
works (GNNs) and other geometric ML ideas to the track reconstruction prob-
lem. State-of-the-art results are obtained using approaches such as the Exatrkx
pipeline, which currently applies separate edge construction, classification and
segmentation stages. One can also treat the problem as an object condensation
task, and cluster hits into tracks in a single stage, such as in the GravNet ar-
chitecture. However, condensation with such an architecture may still require
non-differentiable operations, and arbitrary post-processing. In this work, I ex-
tend the ideas of geometric attention to the task of fully geometric (and therefore
fully differentiable) end-to-end track reconstruction in a single step. To realize
this goal, I introduce a novel condensation loss function called Influencer Loss,
which allows an embedded representation of tracks to be learned in tandem with
the most representative hit(s) in each track. This loss has global optima that for-
mally match the task of track reconstruction, namely smooth condensation of
tracks to a single point, and I demonstrate this empirically on the TrackML
dataset. The model not only significantly outperforms the physics performance
of the baseline model, it is up to an order of magnitude faster in inference.

1 Introduction

A large variety of problems within the high energy physics (HEP) domain can be cast as
dealing with point cloud structure [1–6]. More generally, problems in chemistry, biology, and
robotics are often able to be expressed as point cloud segmentation, classification or regres-
sion tasks. Any case where data is not simply tabulated, but instead contains variable-length
sets or sequences of data points within a training sample, is most generally represented as a
point cloud. Much of the raw data produced in HEP experiments fits this taxonomy, includ-
ing energy deposits in silicon trackers and calorimetery systems, vectors of particle momenta
and abstract representations of hardware, among others. These data are used in a variety of
downstream tasks, such as track reconstruction, jet reconstruction, particle isolation and cal-
ibration. As such, these tasks are well-described as point cloud tasks, which often require an
output at a different scale or granularity than the input. For example, a jet reconstruction may
consume a cloud of N energy clusters and return a set of jet-level values.

The majority of efforts in recent years have been spent on constructing the most expres-
sive architecture to consume this data, from RNNs and CNNs [7–10], to GNNs [11–16], to
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transformers [17, 18], each applying successively fewer restrictions on the input data struc-
ture, and therefore more natively capturing it as point cloud-like. However, the question of
how to represent point cloud tasks in the training process and loss function has received less
attention. Some tasks have intuitive and natural training procedures. For example, jet prop-
erty regression is naturally trained with a single jet-level error loss. The natural loss function
for segmentation of point clouds is less obvious, and it is this problem that I address in this
work.

For this, I take as a test case the task of charged particle track finding in a high lumi-
nosity collider environment. This task exemplifies many of the challenges of point cloud
segmentation: noisy and variable length clouds, large clouds of up to O(1 million) points
with correlations between distant points, various scales of segmented objects that must also
be classified or regressed downstream. I introduce a simple baseline method for this task,
as well as a new loss function called the Influencer Loss, which significantly outperforms
the physics and computational performance of the baseline and which, I argue, rigorously
parameterises the task of point cloud segmentation.

2 Background & Previous Work

The track finding problem in high energy physics shares many similarities with other tasks
such as jet clustering, and can be described as follows: For a given collision event in a
particle collider, with N 3-or-4-dimensional energy deposits, each either associated with one
or more of the M particles traversing the event or associated with noise, return a set of M
track candidates. Each track candidate should be an (ordered or unordered) subset of the N
energy deposits. This distinguishes the tracking problem from the classification problem, as
each point can belong to zero or one or many instances, and there is a variable number of
object instances (particles) across events.

This problem has been traditionally solved as a "navigation" problem, where some start-
ing point is heuristically chosen (e.g. the innermost layer of a detector), a path is seeded
by several physically possible points, then walked through according to a model of particle
trajectory in that environment (e.g. the helical trajectory of a charged particle in a magnetic
field) [19, 20]. More recent efforts treat track finding as a graph traversal problem. In that
case, techniques such as graph neural networks can prune physically unlikely path connec-
tions in a graph representation of the point cloud, then some graph traversal or segmentation
method used to convert the graph into a set of track candidates.

The above methods treat the track finding problem as one composed of sequential points,
and while this is the physical basis for the production of a track, there is no reason to impose
this constraint on a solution. We can treat the set of points in a particle track as the unordered
members of some object that must be detected or "segmented". This task is well-known in the
computer vision community, where it is known as instance segmentation. Such segmentation
can be easily described in the regularly-spaced 2D grid structure of images, either by drawing
bounding boxes [21–25], or by classifying pixels [26, 27]. The boundary of a point cloud
instance is harder to define, and previous point cloud segmentation approaches have mostly
considered this to be a point-wise instance classification problem [28, 29].

A promising approach to point cloud segmentation called Object Condensation is de-
scribed in [30]. In this algorithm, points are embedded into a learned space, as well as receiv-
ing some learned "charge" value. More strongly charged points attract others, and are also
likely to serve as "condensation points" - points that well-represent that object. In inference,
points above some condensation score are sorted by decreasing score, with neighbours itera-
tively found for each point and subsequently removed from the pool of potential neighbours.



While this approach more closely aligns with the task of point cloud object detection
than simple clustering in an embedded space, there are several shortcomings related to the
misalignment between the inference procedure and the training procedure: a) A hard cut is
applied on the condensation score in inference, which requires careful tuning; b) Points are
sorted and iteratively sampled, which is not easily parallelisable, and not directly captured in
the loss function; c) For computational tractability, only "maximum-scoring" condensation
points are considered in training, which can neglect global optima. To address these issues,
let us proceed by defining the characteristics of an ideal point cloud object detection loss
function:

• For the point cloud xi, there should be a notion of representative points Ii and represented
pointsUi, where these need not be mutually exclusive sets;

• We would like our loss function to be fully geometric. That is, we would like to capture
the representativeness of points entirely by the distance between Ii andUi; and

• We would like points inUi to condense around exactly one point in Ii that represents their
class.

In the following section we present a loss function that satisfies these simple constraints.

3 Influencer Loss Function

The Influencer Loss is motivated conceptually by the roles of members in a social network.
The authors of [31, 32] identify a variety of member types based on their participation in
the information flow of a network - their connectivity and whether they are a source or sink
of information. Several of these types are shown in ??. While a more nuanced paradigm
might be valuable in future work, here we simplify to two roles: "influencer" nodes and
"user" nodes. Influencers are those nodes that represent a class, while user nodes point to
influencers as their representative. To handle the notion of directionality, we embed all nodes
with both an influencer embedding and a user embedding, where directed edges are formed
between those user-embedded nodes close to influencer-embedded nodes.

To define the loss function, consider N points {xi} in a track Ta, each embedded into a
space RE with two different learnable models: a user-embedding U(xi) and an influencer-
embedding I(x j). The attractive Influencer-User loss is given by
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For track Ta, this is the arithmetic mean of the distances ∆i j between each of the N2 pairs of
user and influencer embeddings of points in the track. It has minima where all users are close
to one or more influencers from the same track. To discourage users being near influencers
from other tracks, we introduce a repulsive user-influencer loss contribution L−

UI
, and to

discourage condensation around more than one influencer per class, we introduce a second
repulsive contribution between influencers LI. These are defined by

L−
UI
= meani j(max(0, 1 − ∆i j)), and LI = meani j(max(0,∆ − ∆i j)), yi j = 0 (2)

We then take this combination as the Influencer Loss L = L+
UI
+ aL−

UI
+ bLI, where

the weights a and b can be used to tune to the desired efficiency-purity rate and efficiency-
duplicate rate, respectively.

With this loss function in hand, training requires first finding neighbours between user-
influencer pairs within a radius of 1 and influencer-influencer pairs within a radius of ∆, to



Figure 1: A sketch of the single-step inference of the Influencer Condensation model. Hits
are embedded separately as influencers I(xi) and users U(xi), and a radius nearest neighbor
graph is constructed, with users as the database set and influencers as the query set. Influ-
encers with non-empty neighbourhoods are designated the representatives of a track candi-
date, and the neighbourhood is the track candidate itself.

calculate the repulsive losses. Naively, a loop over tracks is required to calculate the attractive
loss. For luminous events, this presents a very expensive step. However, this can be vectorised
with a GPU scatter operation, which provides a significant improvement in training time1.

While this training procedure has extra complexity compared with the naive baseline and
the object condensation approaches, inference is much simpler: We perform a fixed radius
search for user nodes around each influencer nodes, as sketched in fig. 1. For a fully con-
verged loss, we will obtain the desired case of all users in each class neighbouring exactly
one influencer of that class. We examine the performance of the Influencer Loss in the fol-
lowing sections.

4 Physics Performance

Physics performance is here evaluated on the TrackML dataset. This dataset contains events
simulated in a generic, ATLAS-like detector in high-luminosity LHC conditions [33]. While
all events are produced with pile-up of ⟨µ⟩ = 200, in this work I down-sample to fixed num-
bers of tracks as a proxy for different luminosities, in order to study the scaling behaviour of
the object condensation approaches. Additionally, tracks from particles below 1GeV trans-
verse momentum are removed to simplify the problem.

To study the performance of the influencer condensation model, I introduce a naive base-
line that captures the end-to-end representative nature of the condensation approach, but does
not use the influencer loss. Specifically, the baseline uses a greedy approach to condensation:

1. Embed all hits with a transformer network

2. During training, apply a contrastive hinge loss to hits, as in eq. (2)

3. During inference, perform the following loop over all points:

(a) Randomly select a point

(b) If the point is already part of a track candidate, skip it

(c) Otherwise, make the point a "representative" and find all its neighbors within
radius R

1Details of this implementation can be found in the project repository github.com/murnanedaniel/InfluencerNet
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(b) Tracking fake rate

Figure 2: Physics performance across a proxy of luminosity, obtained by downsampling high-
luminosity events. Performance is given as the efficiency and fake rate, as defined in eq. (3).

(d) Propose this representative and its neighborhood as a track candidate

Already, this naive baseline works quite well for low luminosity events (events with less than
100 tracks), as can be seen in fig. 2. The definitions of tracking efficiency and fake rate (FR)
are the conventional ones

e f f =
Nparticles(matched, reconstructable)

Nparticles(reconstructable)
FR =

Ntracks(unmatched)
Ntracks

(3)

where a particle is reconstructable if it has at least 3 hits, a track candidate must also have at
least 3 hits, and a particle is matched if there exists a track candidate such that greater than
50% of its hits belong to the particle.

We see that while the naive baseline struggles to maintain high efficiency as events scale to
higher luminosity, the influencer condensation model stays consistently above 90% tracking
efficiency. Similarly, the fake rate is uniformly an order of magnitude lower when using
the influencer loss, than when using the greedy approach. Some component of the fake
candidates can be attributed to the naively random choice of representatives in the baseline.

5 Computational Performance

While physics performance indeed appears to at least match (and significantly exceed in some
regimes) simpler condensation approaches, the main contribution of the influencer condensa-
tion approach is its high alignment in inference with the tracking challenge. As such, there are
no arbitrary choices or post-processing steps required, and inference is highly parallelizable.
This does come at a cost of training time, as can be seen in the looped influencer performance
of fig. 3a. This cost is due to a track-wise fully-connected distance calculation. This can
already be improved with the GPU-implemented scatter influencer loss, shown in fig. 3a to
reduce the training time to only 1.5× that of the naive baseline.

While the backbone architecture to each condensation approach is the same in our study (a
vanilla transformer), the influencer model requires embedding into two spaces: influencer and
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Figure 3: Computational performance of the Influencer Condensation model and naive base-
line model, across both training and inference. Timing and memory usage are obtained across
1000 events, on an Nvidia A100 40Gb GPU.

user space. As such, there is a slight increase in training memory required, as in fig. 3b. How-
ever, we see the true value of this model in fig. 3c, where the inference time at low-luminosity
is essentially flat, and then scales with the number of tracks, but with an order of magnitude
lower latency than the naive benchmark, which relies on sequential post-processing.

6 Summary

This work introduces a novel approach to the tracking challenge, using a version of object
condensation called influencer condensation. By amortizing a more complex training proce-



dure that harnesses two embedding spaces for each hit, an influencer embedding and a user
embedding, the inference of this condensation model is highly efficient and parallelizable.
We show that despite its very low latency, it still outperforms a much slower baseline model
in track reconstruction efficiency and fake rate measurements. Tracking efficiency remains
above 90% for events containing up to 500 particles. Scaling this model to events of the size
expected at the HL-LHC - O(10k) particles - is intended to be the immediate next step of
this work, in particular with a view to application on ATLAS HL-LHC Inner Tracker (ITk)
events.

Other future research directions include using the representative influencer nodes as fo-
cal points of regressing track parameters and other higher-order physics features, which are
used for downstream tasks. The results presented here use an expensive loop calculation for
the influencer loss function, however shortly prior to writing, a vectorized version of this
loss was implemented and significantly faster training is observed. Future work will present
results with this implementation. Finally, the inclusion of representative points natively in
training opens the possibility of fully differentiable training of a hierarchy of condensed ob-
jects, such that representative track-like nodes of condensed hits may be further condensed
into representative decay chain-like nodes, and so on. This also presents intriguing directions
for pooling and unpooling in generative point cloud architectures.
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