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Abstract. Recent work has demonstrated that graph neural networks (GNNs)
trained for charged particle tracking can match the performance of traditional
algorithms while improving scalability to prepare for the High Luminosity
LHC experiment. Most approaches are based on the edge classification (EC)
paradigm, wherein tracker hits are connected by edges, and a GNN is trained
to prune edges, resulting in a collection of connected components representing
tracks. These connected components are usually collected by a clustering al-
gorithm and the resulting hit clusters are passed to downstream modules that
may assess track quality or fit track parameters. In this work, we consider
an alternative approach based on object condensation (OC), a multi-objective
learning framework designed to cluster points belonging to an arbitrary number
of objects, in this context tracks, and regress the properties of each object. We
demonstrate that OC shows very promising results when applied to the pixel
detector of the trackML dataset and can, in some cases, recover tracks that are
not reconstructable when relying on the output of an EC alone. The results
have been obtained with a modular and extensible open-source implementation
that allows us to efficiently train and evaluate the performance of various OC
architectures and related approaches.

1 Introduction

The exploration of tracking algorithms based on graph neural networks (GNNs) is moti-
vated by the poor computational scaling of combinatorial Kalman filter (CKF) algorithms
with pileup [1]. In recent years, many approaches have been developed around the edge
classification paradigm (see e.g. Ref. [2]), in which GNNs are designed to predict whether
or not edges drawn between tracker hits represent physical trajectories. These architectures
have been shown to demonstrate excellent physics performance and, importantly, scalabil-
ity with respect to pileup [3]. In the majority of these approaches, tracks are rendered from
edge-weighted graphs directly, either by a graph walk algorithm, spatial clustering, or simply
collecting connected components.

This work instead explores a learned track rendering stage based on object condensation
(OC), a multi-loss training scheme we use to cluster hits belonging to the same track in
a learned clustering space. Employing only a very lightweight edge classifying network
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(without any message passing), we show that the OC approach is able to deliver excellent
performance when applied to simulated high-pileup TrackML pixel detector events. We also
show that the algorithm is able to reconstruct tracks with missing edges, which is not possible
when relying on the output of an edge classifier alone. Therefore, this algorithm could also
be used at the end of an EC pipeline, leveraging both node and edge embeddings to resolve
ambiguities that may exist at the output of the edge classifier.

2 Dataset and input features

This study is performed using the TrackML dataset [4, 5] that simulates the worst-case HL-
LHC pileup conditions (⟨µ⟩ = 200) in a generic tracking detector geometry1. Our studies
are limited to the innermost pixel detector layers, including 4 barrel layers and 7 layers in
each endcap. In each pixel tracker event, we embed hits as graph nodes with 14 features,
including:

• The cylindrical coordinates r, ϕ, z of the hits, where z corresponds to the line of the col-
liding proton-proton pairs; the corresponding pseudorapidity η and the conformal tracking
coordinates u and v [6] are also included.

• The hit’s charge fraction (sum of charge in the cluster divided by the number of activated
channels), as well as variables describing the shape and orientation of the cluster introduced
in Ref. [7]. For the latter, we closely follow the implementation in Ref. [2].

3 Tracking metrics

We study several tracking definitions to evaluate the performance of our pipeline. They
are defined with respect to target populations of tracks; for example, we commonly report
the tracking efficiency on reconstructable particles that produce at least three hits and have
|η| < 4.0. The efficiencies are defined with respect to various matching criteria between re-
constructed tracks and truth tracks. For a given reconstructed track c, we define the majority
particle πc as the particle with the largest number of hits within c (and choose a random one
if this condition applies to multiple particles). We write #c for the number of hits in c and #πc

for the number of hits of πc anywhere. We define the majority fraction f in
c as the number of

hits of πc within c divided by #c and the majority outside fraction f out
c as the number of hits

of πc outside of c divided by #πc.

• Perfect match efficiency (ϵperfect): the number of reconstructed tracks with #c > 3, πc

reconstructable, f in
c = f out

c = 1 normalized over the number of reconstructable particles.

• LHC-style match efficiency (ϵLHC): the number of reconstructed tracks with #c > 3,
πc reconstructable, fc > 75% normalized to the number of clusters with reconstructable
πc. Note that duplicates, wherein multiple reconstructed tracks match to one particle, are
possible with this definition.

• Double majority match efficiency (ϵDM): the number of reconstructed tracks with #c > 3,
πc reconstructable, f in

c > 50%, and f out
c > 50% normalized to the number of recon-

structable particles. This definition produces unique cluster-track assignments.

We also define the fake rate based on the double majority metric as the number of recon-
structed tracks with #c > 3 and πc reconstructable that do not satisfy the double majority
criterion normalized to the number of clusters with reconstructable πc.

1We use the version corresponding to throughput phase of the TrackML challenge, which is hosted at Codalab [5].



As we are mostly interested in high-pT tracks, we also consider these metrics with an
additional pT > 0.9 GeV threshold applied to particles and majority particles in the definition
of the metrics. The corresponding metrics are denoted ϵDM

pT>0.9, ϵperfect
pT>0.9, and ϵLHC

pT>0.9.

4 Graph construction

The initial graph is constructed by connecting hits on different detector layers that satisfy a
series of geometric constraints and pass a classifier threshold.

4.1 Edges based on geometric constraints

This procedure is nearly identical to the geometric graph construction procedure described in
Ref. [8], but without applying any cuts based on truth information. Edges between nodes i
and j are selected based on the following geometric variables:

z0 B zi − ri
z j − zi

r j − ri
ϕslope B

ϕ j − ϕi

r j − ri
, and ∆R B

√
(η j − ηi)2 + (ϕ j − ϕi)2,

Here we require candidate edges to satisfy z0 < 197.4 mm, ϕslope < 0.001825/mm, and ∆R <
1.797. The cutoff points were optimized to maximize the fraction of reconstructable track
edges appearing in the graph, while simultaneously minimizing the number of un-physical
edges constructed. In contrast to Ref. [8], no barrel intersection cut is applied. Note that
the performance of the graph construction can be translated to an approximate upper bound
for the performance of the pipeline downstream. Assuming that the pipeline can build tracks
exactly out of those hits that are connected, that is, assuming a pipeline with perfect edge
classification followed by identifying tracks as connected components of the resulting edge
subgraph, we obtain ϵDM

pT>0.9 ≤EC 97.4% and ϵperfect
pT>0.9 ≤EC 84.0%.

We provide four initial edge features based on the coordinates of the two hits involved:
∆r, ∆ϕ, ∆z, and ∆R. The resulting graphs are denoted G = (X,Ra, I), where X = (xi)i=1,...,N ∈

RN×14 are the node features, I ∈ N2×Nedges is the list of edges in coordinate format, and Ra =

(ei j)(i, j)∈I with ei j ∈ R
4 are the edge features2. We also define truth labels li ∈ {0, 1, ...,Nt}

(where Nt is the number of particles in the graph) indicating the hit is noise (li = 0) or belongs
to track t (li = t, 1 ≤ t ≤ Nt); in this work, we do not consider shared hits between tracks.
The truth label yi j indicates whether an edge connects two non-noise hits of the same particle
(li = l j > 0, (i, j) ∈ I). The geometric cuts alone achieve a purity of Nbuilt

true /N
built
total = 4.5% at

2.8 × 106 edges per graph.

4.2 Edge filtering

We then apply a lightweight edge classifier to reduce the number of false edges. For this, we
train a fully connected neural network (FCNN) ϕ that takes node and edge features as inputs.
The node and edge features described in section 2 and subsection 4.1 are concatenated, z(0)

i j =

[xi, x j, ei j], (i, j) ∈ I, and embedded into a 256-dimensional space by a fully connected layer:
z(1)

i j = W (1)z(0)
i j , with learnable weights W (1) ∈ R256×(14+14+4). We then apply a fully connected

network of five hidden layers of width 256 with ReLU activations and residual connections
of the form z(ℓ+1)

i j =
√
βW (ℓ+1) ReLU

(
z(ℓ)i j
)
+
√

1 − β z(ℓ)
i j , where l = 1, . . . , 5, (i, j) ∈ I, and

β = 0.4.

2while edge attributes and features are vectors of length Nedges, they are indexed by double indices (i, j) ∈ I
(abbreviated to i j in subscript) for notational convenience



To obtain an edge weight, we apply the logistic activation function σ: wi j =

σ(W (7) ReLU(z(6)
i j )) ∈ (0, 1)Nedges , where W (7) ∈ R1×256. This output is trained with binary

cross entropy loss to classify whether an edge connects two hits of the same particle. As we
are more interested in tracks with a high value of pT, we exclude true edges connecting hits
of particles with pT < 0.9 GeV from the loss, i.e.,

ℓEF(y, w) B −
1

Nedges

∑
(i, j)∈I

(
δ(pT>0.9) yi j logwi j + (1 − yi j) log(1 − wi j)

)
,

where δ(pT>0.9) B

0 li = 0 ∨ pli
T < 0.9 GeV,

1 else
, (1)

and pli
T denotes the pT of the particle belonging to hit i.

The classifier achieves a ROC AUC of 93.3% when evaluated on all tracks and 99.8%
when evaluated on all tracks of interest. Here, tracks of interest refers to tracks with
pT > 0.9 GeV and the additional constraints described in section 3. To find an appropri-
ate threshold, we calculate the upper bounds to ϵDM

pT>0.9 for the subgraphs satisfying wi j < wthld
for all edges. Based on Figure 1a, we set wthld = 0.03, resulting in TPR = 48.3%,
TPR (tracks of interest) = 98.5%, FPR = 1.1%. The approximate upper bounds for this
threshold are ϵDM

pT>0.9 ≤EC 97.7%, ϵperfect
pT>0.9 ≤EC 92.1%. The purity of the graphs is 68% at

89 × 103 edges per graph.
We can also establish a “lower bound” on the performance of the pipeline by reconstruct-

ing tracks directly based on this stage. For this, we identify tracks with connected compo-
nents of the aforementioned subgraphs (though with a stricter value of wthld) and calculate
the efficiencies. A scan over wthld is shown in Figure 1b and shows a maximum of ϵDM

pT>0.9 at

wthld = 0.31 with ϵDM
pT>0.9 = 78.9%, ϵLHC

pT>0.9 = 77.1%, and ϵperfect
pT>0.9 = 41.1%. However, it should

be noted that more elaborate probabilistic schemes to build tracks based on edge scores might
surpass these numbers slightly.

5 Object condensation

Our architecture extends traditional edge classification pipelines with an additional step based
object condensation (OC) [9], a set of truth definitions and loss functions designed to cluster
hits belonging to the same object and regress the properties of the reconstructed objects. OC
has been extensively validated in applications to calorimetry [9–11], but its applications to
tracking have to-date been relatively unexplored.

5.1 Loss functions

For each hit, the OC network predicts condensation strength βi ∈ R and clustering coordinates
ci ∈ R

dc . During training, the highest-βi hit in each track is dubbed the track’s condensation
point; the goal of OC is to cluster hits around their track’s condensation point in the learned
clustering coordinate space. The condensation strength of a track t is that of its condensation
point, i.e. β(t) = max{i|li=t} βi. The condensation strength predicted for each hit is used to
calculate an un-physical “charge” defined by qi = arctanh2βi + qmin (here, qmin is treated as
a hyperparameter). The charge corresponding to a track’s condensation point is denoted q(t),
located at the position c(t). During training, the condensation points for each track are used
to define attractive and repulsive losses designed to produce well-separated clusters of hits
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Figure 1: Performance of the edge classifier applied during edge construction. The left plot
shows the true positive and false positive rates together with approximate upper bounds on the
recoverable performance based on a perfect EC. The right plot shows the achievable tracking
performance by applying a cut on the edge classifier and identifying tracks with connected
components of the resulting subgraph. Note that ϵDM

pT>0.9 is not strictly monotonous because it
is normalized to the number of reconstructed tracks rather than particles.

belonging to the same track in the ci coordinates:

LV B
1
N

N∑
i=1

qi

Nt∑
t=1

(
δ(li=t)Vatt

t (ci) + srep
(
1 − δ(li=t)

)
V rep

t (ci)
)

(2)

Here, δ(li=t) is 1 when the node’s track label is t and 0 otherwise, and srep is a hyperparameter.
The potential functions are a quadratic attractive loss and a repulsive hinge loss:

Vatt
t (c) B δ(pT>0.9) q(t) ∥c(t) − c∥2, V rep

t (c) B q(t) max(0, 1 − ∥c(t) − c∥), (3)

where δ(pT>0.9) (defined as in Equation 1) excludes hits from noise or low-pT particles from
the attraction. An additional loss term Lβ is designed to encourage a unique condensation
point for each track and suppress the condensation strengths of noise hits:

Lβ B
1
Nt

Nt∑
t=1

(1 − β(t)) + sB

∑N
i=1 βi δ(li=0)∑N

i=1 δ(li=0)
. (4)

Here, sB is a hyperparameter that controls the strength of noise suppression. All loss terms
are finally combined as L B LV + sβLβ. For the results in this paper, we choose srep = 0.6,
sβ = 0.004, qmin = 0.34, and sB = 0.09. To reduce the memory footprint of the loss functions,
the graphs are split in 32 sectors during training.

5.2 Model

The GNN that is doing the heavy lifting of this tracking pipeline is built from interaction
network layers [12] with residual connections in the node updates. Node and edge features
are first encoded, x(1)

i = Wenc
nodexi, e(1)

i j = Wenc
edgeei j , where (i, j) ∈ I, Wenc

node ∈ R
192×14, Wenc

edge ∈
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Figure 2: Optimizing the DBSCAN hyper-
parameters to obtain the maximum perfor-
mance. The dashed lines are the upper and
lower bounds after the EF step for reference
(see Figure 1).
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R192×4. Then, five iterations of message passing are performed with

e(k+1)
i j =

(
Φ(k+1) ◦ ReLU

)([
x(k)

i , x
(k)
j , e

(k)
i j
])
,

x(k+1)
i =

√
βΨ(k+1)

([
ReLU

(
x(k)

i
)
,
∑

j∈Ni
e(k+1)

i j
])
+
√

1 − β x(k)
i . (5)

Here, Φ and Ψ are FCNNs with ReLU activations and a layer width of 192 and one hidden
layer. β has been chosen to be 0.2. Finally, the outputs are decoded as ci = Wdec

c ReLU(x(6))
(clustering coordinates), βi = σ

(
Wdec
β ReLU(x(6))

)
(condensation likelihoods), where σ is the

logistic function, and Wdec
c ∈ R192×24, Wdec

β ∈ R
192×1. The total number of parameters of this

model is 1.9 × 106.

5.3 Postprocessing and results

Hit clusters produced in the OC clustering space must be rendered by a downstream algo-
rithm. For this, we use the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), an iterative clustering algorithm that has two parameters, ϵ (defining the size
of the neighborhood of a point that is considered when merging clusters), and k (minimum
number of points within a neighborhood for the points to be considered a core point) [13].
For this application, k = 1 is optimal; maximizing ϵDM

pT>0.9 vs ϵ yields ϵ = 0.279 (see Figure 2).

With this, we obtain ϵDM
pT>0.9 = 95%, ϵLHC

pT>0.9 = 97%, ϵperfect
pT>0.9 = 80% and fpT>0.9 = 1.7%. All

metrics are presented vs pT and vs η in Figure 4.
In a side study, we have also tested the ability of the OC network to reconstruct tracks

with missing edges after graph construction or edge filtering. For this, all edges between the
barrel and the right endcap have been removed after graph construction, limiting the upper
bound for ϵperfect

pT>0.9 for a perfect EC to almost zero for tracks with 2 < η < 3. However, as OC
is using edges only as a means to exchange information, it is not subject to this upper bound.
Indeed, the OC pipeline achieves ϵperfect

pT>0.9 = 60% in this region. This is shown in Figure 3.
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Figure 4: Tracking performance in bins of pT and η.
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Figure 5: Comparing the performance of the OC pipeline with the upper and lower bounds
introduced in this paper.

6 Summary

This paper presents the first GNN-based charged particle tracking pipeline that uses the OC
approach to reconstruct tracks in the worst-case pileup conditions expected at the HL-LHC.
Our pipeline shows excellent performance with respect to several metrics when applied to
the pixel detector of the TrackML dataset. We also demonstrate that OC approach can join
partial tracks that are not connected by any of the edges used for message passing, allowing



it to outperform algorithms that solely rely on the output of an EC in certain scenarios. This
suggests that the use of OC at the output stage of EC-based pipelines may lead to a boost in
performance. Future applications of OC may also allow for the regression of track parame-
ters, for example transverse momentum, as part of an architecture capable of rendering tracks
and preliminary fits in one shot. The incorporation of track physics may well lead to a more
robust model.

All results were produced with the open-source project [14] that implements various OC
tracking architectures in a modular and extensible Python package.
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