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Abstract. The continuous growth in model complexity in high-energy physics
(HEP) collider experiments demands increasingly time-consuming model fits.
We show first results on the application of conditional invertible networks
(cINNs) to this challenge. Specifically, we construct and train a cINN to learn
the mapping from signal strength modifiers to observables and its inverse. The
resulting network infers the posterior distribution of the signal strength modi-
fiers rapidly and for low computational cost. We present performance indicators
of such a setup including the treatment of systematic uncertainties. Addition-
ally, we highlight the features of cINNs estimating the signal strength for a vec-
tor boson associated Higgs production analysis of simulated samples of events,
which include a simulation of the CMS detector.

1 Introduction

Likelihood fits in high-energy physics (HEP) can be time-consuming to perform especially
with increasing number of nuisance parameters. Compared to numeric maximum likelihood
approaches posterior inference with conditional Invertible Neural Networks (cINNs) is ex-
tremely time-efficient. Hence, they appear as a candidate for physics parameter inference.
Since the network structure is based on normalizing flows, the resulting network model is
continuous and continuously differentiable in both directions, which makes them potentially
applicable in differentiable analysis workflows. Outside of HEP, these networks have already
been successfully applied in several challenges, including guided image generation, image
colorization and scientific model inversion [1, 2]. Apart from these, cINNs have also proven
to be successful in several physics applications, such as stellar parameter estimation, cosmic-
ray source property determination and detector effect unfolding [3–5]. In this paper, cINNs
are applied to signal strength modifier parameter inference for a vector boson associated
Higgs production analysis at the CMS experiment using simulated samples which include a
simulation of the CMS detector. The performance indicators and the treatment of statistical
and systematic uncertainties are going to be presented. We describe the parameter recon-
struction quality, and highlight the features of the obtained prediction-truth distributions.
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2 Vector Boson associated Higgs Production Analyis Strategy and
Setup

Inference on the signal strength modifiers has been performed in the VH (V = Z,W) produc-
tion processes at the CMS experiment on Monte Carlo (MC) samples. These samples have
been generated with herwig++ [6] and pythia [7]. Especially, the gluon-fusion (gg → ZH)
and the quark initiated processes (qq → ZH and qq → VH) have been considered. In total,
there are three signal processes (with three signal strength modifier parameters) and 13 cor-
responding background processes – such as Drell-Yan production process (DY) and vector
boson fusion (VBF) – with a nuisance parameter each. In the analysis workflow, the relevant
final state objects from the MC samples are selected and categorized. Each sample in each
category is then further categorized with a feed-forward deep neural network (DNN). This
DNN returns a probability score of each event belonging to a process group. These proba-
bility scores can be histogrammed and used as an observable for the maximum likelihood fit.
For the cINN, these histograms are used as input for the conditions c.

3 Neural Network Setup
3.1 Introduction to cINNs

cINNs approximate the unknown posterior distribution p(x|c) of the observable x given c
using the network parameters ϕ, i.e. after training

pϕ(x|c) ≈ p(x|c) (1)

holds. This is done is done by minimizing the Kullback-Leibler divergence between these
distributions:

KL(p ||pϕ) = Ex∼p(x|c)

[
log

(
p(x|c)
pϕ(x|c)

)]
= log

(
pϕ(x|c)

)
+ const. (2)

Eq. 2 can be rewritten using the network output variables z = f (x) and the continuous
differentiability of the network. Enforcing z to follow a normal distribution N(z|0, 1) this
maximum likelihood expression can be rewritten into the final form of the loss function L as

L = Ex∼p(x|c)

[
z2

2
− log

∣∣∣∣∣det
∂z
∂x

∣∣∣∣∣] , (3)

which requires the network architecture to have feasible Jacobian determinants.
The network input x and c and network output z have a corresponding node. The inputs

x are mapped to the normal distributed latent outputs z. The cINN model itself consists of
Affine Coupling Blocks (ACBs) and permutation layers, which remove the correlations be-
tween the inputs x. At the global optimum of the loss function the latent space distribution
becomes statically independent from the input data. The ACBs receive the conditions as an
additional input. The normalizing flow is implemented in these blocks, which keeps the Ja-
cobian term easy to evaluate and guarantees the invertibility of the network. As an ACB, the
GLOW coupling block [8] is used, see fig. 1, which decomposes the forward and backward
transformation into two step-wise mappings with a triangular Jacobian each. For this reason,
the composite Jacobian is only dependent on the product of the diagonal entries of each ma-
trix. The mappings si and ti do not need to be invertible themselves and can be parameterized
with feed-forward DNNs.

During training, the network learns the mapping from the inputs x to the fixed-shape
latent output space z. Upon convergence, sampling the z from the latent space and propagating
these samples backwards from the network, the samples for each input’s posterior distribution
p(x|c) can be obtained.



Stellar Parameters from INNs 7

�

�1

�2

�2 �2

⊙ exp( ( , �)) + ( , �)�2 �1 �1 �1 �1

⊙ exp( ( , �)) + ( , �)�1 �2 �2 �2 �2 �1

�1 �1

�2

��

Sub-Network

Sub-Network

Conditional Affine Coupling Layer Forward Pass

�

�1

�2

�2 �2

( − ( , �)) ⊙ exp(− ( , �))�2 �1 �1 �1 �1

( − ( , �)) ⊙ exp(− ( , �))�1 �2 �2 �2 �2 �1

�1 �1

�2

��

Sub-Network

Sub-Network

Conditional Affine Coupling Layer Backward Pass

Figure 5. Schematic overview of the architecture of the conditional affine coupling blocks used in the cINN. In particular we show the

GLOW (Generative Flow; Kingma & Dhariwal 2018) configuration, where the outputs si() and ti() are computed by a single subnetwork

(for each i). The top panel shows how data is passed through the block in the forward direction (from x to z), while the bottom panel
displays the inverted case following the affine transformations in Equations(4) and (5).

GLOW (Generative Flow; proposed by Kingma & Dhari-
wal 2018) configuration (see Section 3.2 for details). In this
setting the forward mapping is modified to f (x; c) = z and
the inverse to x = g(z; c). The invertibility is given for fixed
condition c as

f ( · ; c)−1 = g( · ; c). (6)

In our regression problem the conditioning is given by the
observations. Therefore, as for the standard INN, during
training given an observation the network will learn to en-
code all information about the physical parameters in the
latent variables that was not contained in the observation.
Also analogous to the standard INN, we retrieve the de-
sired posterior distribution p(x|y) for a given observation y
by sampling the latent variables according to their Gaussian
priors and using the inverted network g:

xposterior = g(z; c = y), with z ∼ pZ (z) = N(z, 0, I), (7)

where I is the K × K unity matrix with K = dim(z).
One of the cINN benefits over the standard INN archi-

tecture is that no zero padding (as described in Ardizzone
et al. 2019a) is necessary if the dimension of [y, z] were to
exceed that of x, as the conditioning input c can be arbi-
trarily large in this approach and the dimension of z simply
matches that of x.

3.2 Architecture Details

To implement the cINN for our purposes we use the ’Frame-
work for Easily Invertible Architectures’ (FrEIA) for python
(Ardizzone et al. 2019a,b) based on the ’pytorch’ library
(Paszke et al. 2017).

In our problem the input x is given by the six physi-
cal parameters of the isochrone tables, so that, following the

cINN architecture, we also have six latent variables z. Our
cINN is conditioned on the observables, 2 and 5 magnitudes
for Wd2 and NGC 6397, respectively, and the individual stel-
lar extinctions, so that the condition c has the dimension 3 in
the Wd2 cases and 6 for NGC 6397. Ardizzone et al. (2019b)
also introduce a ’conditioning’ network which transforms the
input condition into some intermediate representation and
is trained jointly with the cINN. We do not use this addi-
tional network in our setup, as we find that given the few
observables in our problem the cINN tends to overfit to the
synthetic training data when employing a feature extraction
network, resulting in poor performance on the real bench-
mark data.

Our cINN consists of 16 conditional affine coupling
blocks, each in the GLOW configuration (Kingma & Dhari-
wal 2018), which reduces computational cost and speeds up
learning by jointly predicting the subnetwork outputs si()
and ti() using a single subnetwork. As in Ardizzone et al.
(2019b) we introduce an additional nonlinear transforma-
tion of the scale coefficients s,

sclamp =
2α
π

arctan
( s
α

)
, (8)

where α = 1.9, so that sclamp ≈ s for |s | � α and sclamp ≈ ±α
for |s | � α, in order to avoid instabilities induced by large

magnitudes of the exponential exp
(
sclamp

)
.

We alternate the conditional affine coupling blocks with
random permutation layers. The latter consist of random
orthogonal matrices which mix the information between the
two streams u1 and u2 in the coupling blocks. Following
Ardizzone et al. (2019b), these matrices are fixed during
training and cheaply invertible. The combination of these
permutation layers with the interlocked affine transforma-
tions of the affine coupling blocks ensures that the network
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Figure 1. The GLOW affine coupling block. The outputs of the previous block u for each block are
split and are processed successively ensuring the invertibility of the block. The conditions c are used as
an input for both sub-networks. [3]

3.2 Synthetic Training Sample Generation

3.2.1 Parameter Prior Selection

Bayesian posterior inference requires the choice of such priors which reflect the expectations.
For the signal strength modifier inference, each process has been scaled with a scaling coeffi-
cient µ drawn from the prior distributions to reflect the variations in the signal and background
strength. Both statistical and systematic uncertainties have been treated in the training sample
generation process.

For the signal processes, each of these µ has been drawn from a Γ distribution. This
particular choice of priors enables a more refined sampling in the µ < 10 region, where signal
modifiers are the most expected. At the same time, the long decay of the Γ prior enables to
maintain sensitivity for any µ ≲ 100. For the normalizing uncertainties, the priors have been
chosen differently. The background and the luminosity nuisance parameter priors have been
set to a lognormal distribution with mean 1. The latter nuisance parameter has a narrower
prior and has been applied to each process equally.

3.2.2 Statistical and Shape-Changing Systematic Uncertainty Modelling

For the shape-changing uncertainties, only the templates of the 1σ up and down variations
are accessible. For this reason, interpolation and extrapolation between these histograms are
required. To model these uncertainties, a histogram template morphing technique [9] has
been applied for each corresponding nuisance parameter.

Statistical effects originate both from the limited MC sample size and from the expecta-
tion following a Poisson distribution. After the histogram template morphing, each process
bin content has been varied following a Poisson distribution to represent the former statistical
effect. For the latter each resulting summed bin content has been varied similarly.



A sketch of the network setup is shown in fig. 2. In total, 16 physics signal and back-
ground modifier parameters have been used as an input with an added luminosity nuisance
parameter.

Figure 2. Sketch of the conditional invertible neural network structure, the inputs, the nuisance param-
eters and the latent space parameters z.

3.3 cINN Setup

The network has been trained on a dataset of 1.5 million samples and inference has been
performed on 150 000 test samples. The model has been trained until both loss function
values converged to a similar local optimum. The cINN model itself was implemented in
PyTorch [10] using the Framework for Easily Invertible Architectures (FrEIA) library [1].
The network consists of 12 alternating GLOW ACBs and permutation layers. The feed-
forward DNNs encoding the mappings si and ti in the sub-networks in the GLOW blocks have
3 layers with 128 nodes with ReLU activations each. The learning rate has been gradually
decreased from 10−3 to 10−5 via a cosine learning rate scheduler. As an optimizer Adam [11]
has been used and a model with the lowest validation loss has been evaluated further. The
model was trained for 11000 epochs.

4 Signal Strength Modifier Parameter Inference

Compared to the maximum likelihood fit, parameter inference with the trained network is
swift. The performance of the network can be characterized by comparing the latent space
distribution to the expected normal distribution, where any deviations from the latter lead
to biases in the predictions. Inherent model biases in the predictions can also be studied
through the calibration curves as well. The prediction quality can be studied by comparing
the network parameter predictions to the true Monte Carlo value. Finally, comparing the
model posteriors to their priors yields information about the reconstruction quality.

4.1 Latent Space Distribution

The latent space distributions for three selected output nodes are shown in fig. 3 for the test
samples. The network model manages to reproduce the expected normal distribution shown
in red. No strong deviations or biases can be observed in any of these distributions. Hence,
the sampling from N(0, 1) is justified to obtain the approximated posterior samples.



Figure 3. Latent space variable distributions for three selected zi. The latent space distributions all
closely follow the expected normal distribution in red.

4.2 Calibration Curves

The confidence of the network in the predictions can be characterized through the calibration
curves. The calibration error for a given confidence interval is defined as

ecal(q) =
Nin

N
− q, (4)

where Nin is the total number of inferred posteriors containing the true MC value within the
q quantile of the posterior. Wherever ecal(q) is negative is a sign of an overconfident model
predicting too narrow posterior distributions; conversely, positive values of ecal(q) describe
an under-confident model, which yields too broad posteriors. The ratio Nin/N as a function
of q is shown in fig. 4 for four selected parameters. Most calibration errors are ecal ≈ 0,
and the maximum absolute median calibration error of all parameters is ecal ≈ 4%. For this
reason, the model posteriors are expected to be scattered well around the true MC values and
no strong biases are expected towards a parameter region.

Figure 4. The calibration curves of the trained model (blue). Here, the curves of four selected input
variables are shown. The fraction of histograms Nin/N has only minor deviations from q.

4.3 Network Predictions, Posterior Distributions and Parameter Reconstruction
Quality

The network predictions are obtained by taking the mean of the obtained posteriors distribu-
tions for a given condition c. The uncertainty on these values was determined from the 68%
quantiles of posteriors. The comparison of these predictions to the true values is shown in
fig. 5. Depending on the reconstruction quality, the parameters can be grouped into three
categories:



Figure 5. The network predictions and the the true MC values for three selected nuisance parameters
and one selected signal strength modifier parameter.

• Well-reconstructed parameters: the posteriors of these parameters are narrow and centered
around the true MC value. For this reason, the uncertainty on these parameters is small as
well.

• Weakly-reconstructed parameters: for these parameters, the network has already achieved
some sensitivity to the parameters. However, the posteriors are broader than those of the
well-reconstructed parameters and network shows less confidence in their reconstruction.

• Unrecognized parameters: for these parameters, the network does not recognize the effect
of the parameters on the conditions and predicts the average of the prior distribution ex-
clusively. If the physics parameter x is weakly statistically dependent on c, then the priors
p(x) and the posteriors p(x|c) coincide:

p(x|c) ≈ p(x) (5)

For the dominant background processes such as DY, the nuisance parameters are well-
reconstructed and the network has achieved the highest sensitivity to them. In the 2D his-
tograms of fig. 5, these prediction of the parameters scatter closely around the dashed gray
perfect prediction line and the histogram is symmetric to this line. In fig. 6, the narrow poste-
rior distribution can be clearly seen, which greatly differs from the orange prior distribution.
For the weakly-reconstructed parameters, such as the luminosity nuisance parameter, the net-
work develops some sensitivity from the mean of the prior distribution but fails to predict the
true values over the complete prior region. For these parameters, a close similarity between
the priors and posteriors can be observed as it can be seen in fig. 6. For the unrecognized
parameters such as VBF, a narrow distribution in fig. 5 can be observed as the model returns
the mean of the prior as prediction. As a consequence, the posterior and prior distribution in
fig. 6 coincide.

For the signal processes, clear deviations from the true values in the low-signal µ ≲ 10
region was observed. Since the latent space distributions and calibration curves show no
signs of biases in the trained network model, this effect can be explained by the network
losing sensitivity in this region; hence the predictions are mapped towards the mean of the
prior, resulting in the tail in fig. 5. This effect can be most effectively reduced by improving
the analysis sensitivity further. For the higher-than-expected signal region, the network is
able to reconstruct these parameters with good confidence. In fig. 6, the similarity between
the posteriors and priors can still be observed; the width of the predicted posterior distribution
speaks of a low-confidence reconstruction quality.



Figure 6. The obtained posterior distributions for the standard model expectation (blue). The priors are
shown in orange. The location of the MC-truth and that of the predictions are shown in red and black,
respectively. The blue horizontal bars represent the 68% quantile edges of the obtained posteriors.

5 Conclusion

In this work, the capability of the cINNs in the reconstruction of signal strength modifier pa-
rameters has been shown and the performance of the trained network has been described.
cINNs are versatile networks which encode a continuous and continuously differentiable
model, which makes them applicable in differentiable analysis workflows. These networks
can infer these parameters several orders of magnitude faster than many-parameter likelihood
fits and are able to characterize the reconstruction quality reliably. The trained model’s output
matches the expected latent distribution’s shape, shows no strong biases and is neither under-
or over-confident. The trained network is able to reconstruct the value of µ in regions where
the analysis sensitivity is sufficient. The resolution of the network can be characterized by
the widths of the posteriors: the better the resolution the narrower the posterior.
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