
Using a Neural Network to Approximate the Negative Log
Likelihood Function

Shenghua Liu1,∗, Nathan Jamieson1, Kevin Lannon1, Kelci Mohrman1, Sirak Negash1, Yuyi
Wan1, and Brent Yates2, on behalf of the CMS Collaboration
1University of Notre Dame, Notre Dame, IN, USA
2The Ohio State University, Columbus, OH, USA

Abstract. An increasingly frequent challenge faced in HEP data analysis is
to characterize the agreement between a prediction that depends on a dozen
or more model parameters—such as predictions coming from an effective field
theory (EFT) framework—and the observed data. Traditionally, such character-
izations take the form of a negative log likelihood (NLL) function, which can
only be evaluated numerically. The lack of a closed-form description of the
NLL function makes it difficult to convey results of the statistical analysis. Typ-
ical results are limited to extracting “best fit” values of the model parameters
and 1D intervals or 2D contours extracted from scanning the higher dimen-
sional parameter space. It is desirable to explore these high-dimensional model
parameter spaces in more sophisticated ways. One option for overcoming this
challenge is to use a neural network to approximate the NLL function. This
approach has the advantage of being continuous and differentiable by construc-
tion, which are essential properties for an NLL function and may also provide
useful handles in exploring the NLL as a function of the model parameters.
In this talk, we describe the advantages and limitations of this approach in the
context of applying it to a CMS data analysis using the framework of EFT.

1 Introduction

This study builds on a previous CMS analysis [1], in which 16 Wilson coefficients (WCs) in
the framework of standard model effective field theory (SMEFT) were used to parameterize
different types of new physics that could affect top quark production. The likelihood was
calculated using binned observed yields (multilepton events selected from 2017 data [1]) and
binned simulated yields (which depend on the WCs quadratically and on nuisance parameters
(NPs) encoding systematic uncertainties). The full likelihood function (LF), L(c, θ), is thus
a function of the 16 WCs (ci for 1 ≤ i ≤ 16) and close to 100 NPs (θ). Allowing the
NPs to take values that maximize the likelihood for every set of WC values, the profiled LF,
Lp(c) B L(c, θ̂(c)), only depends on the 16 WCs. The profiled delta negative log likelihood,
∆NLL(c) B ∆(− logLp) = (− logLp(c)) − (− logLp(ĉ)), was scanned in 1D and 2D in two
ways to produce confidence intervals and contours of the WCs. Frozen scans scan over 1 (or
2) WCs while fixing the others to the SM value of 0, and profiled scans profile the other WCs
away. In both cases all the NPs were profiled away already.

∗e-mail: sliu24@stanford.edu

Typical approaches to communicating the results in these EFT models involve either pro-
filing out most of the parameters of interest (the WCs) to publish 1D or 2D likelihood scans
(as described just above) or providing measured values and their covariances allowing one to
build a Gaussian approximation to the ND profiled LF (N being the number of parameters of
interest). To preserve higher order effects, beyond the Gaussian approximation, without sacri-
ficing information about any of the WCs, we follow the approach from Ref. [2] to train a deep
neural network (DNN) to approximate the profiled ∆NLL in Ref. [1]. This approach provides
a fast and differentiable approximation of the ND profiled ∆NLL, as a function of the WCs
with the NPs already profiled away. For simplicity’s sake, further mentions of ∆NLL mean
the profiled ∆NLL unless otherwise specified. The DNN’s portability allows the community
to explore the profiled ∆NLL from our analysis in new, albeit approximate, ways, due to its
small size (megabytes) and well-developed deep learning software packages [3–5].

2 Learning the Likelihood Function

We use a fully-connected, feed-forward DNN consisting of the following layers sequentially:

• A non-trainable standardization layer that transforms the 16 inputs (the WCs) individually
such that their distribution has a mean of zero and a standard deviation equal to one.

• A non-trainable quadratic layer that computes all the square and cross terms between the
16 inputs (cic j for 1 ≤ i ≤ j ≤ 16) and appends them as additional inputs to the next layer.
This saves the DNN from having to learn the quadratic dependence of the likelihood on the
WCs discussed in Section 1.

• Two hidden layers feeding into one output (the ∆NLL).

• A non-trainable layer that is the inverse function of standardizing the output in the training
set.

The DNN is trained using PyTorch version 1.11 [3] on a sampling of the profiled ∆NLL.
We sample around 50 million points across the 16D space with the NPs profiled away in
the process, and regions with high likelihood are more heavily sampled to enhance DNN
performance in these regions of interest. Figure 1 shows the training set distribution.

Listed in Table 1 are the hyperparameter values we found to have the best performance by
trials. For the numerical hyperparameters, we found that varying them within a reasonably
relaxed range gave very similar performances, so in practice it was not difficult to tune these
hyperparameters to yield satisfactory results.

Figure 2 shows the loss curve, accuracy curve, and residual plot for the training of the
finally selected DNN. In Figure 2a, the DNN eventually reaches a very low loss of close to
10−4 without the training and testing curves separating significantly, indicating an excellent
fit without overfitting. In Figure 2b, the DNN reaches over 99% accuracy, confirming an
excellent fit. In Figure 2c, other than the very few outliers at the bottom of the plot near
the output value of 130, the residuals show no obvious pattern and concentrate around 0,
indicating a good fit across the range of outputs in the testing set.

3 DNN Validation: Comparison of DNN Likelihood Scans with
Published Likelihood Scans

To further visualize the accuracy of the DNN, we show in Figures 3 to 7 select 1D and 2D
scans published in Ref. [1] compared to DNN predictions. For statistical reasons, both the
published and DNN-predicted curves (or surfaces in 2D scans) are shifted vertically so that

0 50 100 150 200 250 300
Output (NLL)

0

20000

40000

60000

80000Fr
eq

ue
nc

y

41.5 fb 1 (13 TeV)CMSPreliminary

Figure 1: Training set output (∆NLL) distribution. Regions in the WC space with low NLL
(high likelihood) are sampled more heavily to improve DNN performance in these regions of
interest. Multilepton events selected from 2017 CMS data [1] were used in generating this
training set.

Table 1: Hyperparameters of DNN training. The last three hyperparameters deal with learn-
ing rate reduction, our use of which was inspired by Ref. [2]. We implement learning rate
reduction using the ReduceLROnPlateau option in PyTorch’s learning rate scheduler. The
mode for learning rate threshold is the default option of relative threshold.

Hyperparameter Considered Best
Nodes 500–2000 700
Hidden Layers 2–4 2
Minibatch Size 512, 1024 512
Epochs 500 500
Activation Function SELU, ReLU ReLU
Loss Function Huber Loss, MSE MSE
Optimizer SGD, Adam Adam
Initial Learning Rate 10−3, 10−4, 10−5, 10−6 10−4

Learning Rate Reduction Factor 0.2 0.2
Learning Rate Reduction Patience 5–25 20
Learning Rate Reduction Threshold 10−6 10−6

their respective minimum is 0. This additional shift is the extra δ in the 1D scan labels,
2δ∆NLL. Mathematically, for frozen scans, 2δ∆NLL B 2(log(Lp(ĉi, 0)) − log(Lp(ci, 0))),
where ci is the WC scanned over and 0 means the other WCs are fixed to the SM value of 0.
For profiled scans, 2δ∆NLL B 2(log(Lp(ĉ))− log(Lp(ci, ĉ∗(ci)))), where ĉ∗ are the values of
the other 15 WCs that maximize the likelihood given ci. The NPs are already profiled away
in all scans.

To make profile scans with the DNN, we repurpose PyTorch’s optimizer to minimize the
DNN output by adjusting the 16 inputs (WCs). The slight deviations in the profiled scans

(a) Loss curve. The MSE loss
of the testing set and a ran-
dom sample of the training set
is plotted against the number of
epochs trained.

(b) Accuracy curve, showing
the fraction of inaccurate points
in the testing set as a function
of the number of epochs. A
point is considered accurate if
the predicted output is within
0.05 absolutely of or 1% rela-
tive to the target output.

50 100 150 200 250 300
Target Outputs

-1.5

-1.0

-0.5

0.0

0.5

R
es

id
ua

l (
Ta

rg
et

 -
Pr

ed
ic

tio
n)

41.5 fb 1 (13 TeV)CMSPreliminary

10 4

10 3

10 2

10 1

100

Fr
ac

tio
n

of
 O

ut
pu

t B
in

(c) Residual plot of the trained
DNN.

Figure 2: Key graphs summarizing the training and performance of the selected DNN.

(Figures 4 to 7) are due to the multiple local minima of the NLL in the WC space as a result
of EFT fits with quadratic dependence on the WCs. Upon investigation, the deviations are
due to our process of profiling with the DNN happening to settle in a different minimum than
the default minimizer used for the published results. The impact on the extracted limits is
negligible and all the DNN scans agree well with the published scans.

4 Scanning Over Reparameterized Wilson Coefficients with the DNN

Sometimes, due to theoretical reasons, it is interesting to explore the 16D NLL using a set
of reparameterized axes—new WCs that are linear combinations of the original ones. The
trained DNN is easily reusable for such reparameterizations by inserting a non-trainable lin-
ear layer representing the reparameterization, without retraining. As an example, we consider
a pair of such reparameterized WCs on page 6 in Ref. [1]. The ctW and ctZ WCs (over which
the published scans in Figure 6 are made) are themselves reparameterizations of the “raw”
WCs of the EFT operators ‡O(i j)

uW and ‡O(i j)
uB . To make scans over the raw WCs, we insert a

non-trainable linear layer undoing the reparameterization into the DNN and proceed as usual.
Intuitively, since this reparameterization is only in the 2D subspace spanned by the two WCs,
we should expect the resulting scans to be a shear and a rotation of the original. Indeed,
this agrees with the new scans shown in Figure 8 (compared to Figure 6). Even though this
example only involves a reparameterization of 2 WCs, the method works the same way for
any reparameterization of the 16D space.

5 Computational Performance of the DNN

A big motivator for using the DNN is the evaluation speedup over the default method. It is
desirable to perform likelihood scans in more than one or two dimensions [1]. However, since

Figure 3: 1D scans of ctφ with the other WCs fixed to their SM values (top) and profiled
(bottom), in the original scope (left) and zoomed in (right).

Figure 4: 1D scans of c3
φQ with the other WCs fixed to their SM values (top) and profiled

(bottom), in the original scope (left) and zoomed in (right).

Figure 5: 1D scans of cbW with the other WCs fixed to their SM values (top) and profiled
(bottom), in the original scope (left) and zoomed in (right).

Figure 6: Confidence contours of 2D scans of cφt and ctφ (top) and ctW and ctZ (bottom) with
the other WCs fixed to their SM values (left) and profiled (right).

Figure 7: Confidence contours of 2D scans of c3
φQ and cbW (top) and c−φQ and ctG (bottom)

with the other WCs fixed to their SM values (left) and profiled (right).

Figure 8: Confidence contours of 2D scans of the raw WCs of the ‡O(i j)
uW and ‡O(i j)

uB operators
(linear combinations of ctW and ctZ) as defined on page 6 in Ref. [1], with the other WCs
fixed to their SM values (left) and profiled (right).

the number of points needed to describe features increases exponentially with dimensional-
ity, computational cost quickly becomes prohibitive. The DNN helps alleviate this issue by
providing a 5-order-of-magnitude speedup (2×10−6 s per point on one GPU with a batch size
of around 1000 vs. 0.258 s on one CPU per point in our testing) over the default method.
This speedup already has a practical impact on making 2D profiled scans. It takes around
4.5 × 105 s to make one such scan using the default method on a CPU, while it takes around
450 s to do so using the DNN on one GPU, which is 103 times faster. The two orders of
magnitude of speedup lost relative to single-point evaluations is due to taking 50 random

starting points in profiling with the DNN, which helps with finding lower minima but could
be decreased if needed.

In terms of portability, the trained DNN is a few megabytes in size and therefore could
be easily transmitted. The default framework for evaluating the ∆NLL is also quite small,
but it suffers from slow evaluation compared to the DNN. Alternatively, a grid scan with
some smart indexing could potentially be evaluated very quickly, but even just 10 points
per dimension would imply a 10 PB storage requirement. Therefore, the DNN enjoys both
desirable properties and thus mitigates barriers to more sophisticated NLL analyses and NLL
distribution.

6 Discussion

This paper presents a trained DNN that approximates the profiled ∆NLL in Ref. [1] accurately
and very quickly. The trained DNN is also easily reusable for reparameterizations of the WC
space without retraining.

The main advantages of the DNN are evaluation speed up and portability. The 5 orders of
magnitude of speed up on evaluating the ∆NLL over the default method can be really useful
depending on the use case. Furthermore, the DNN is small (megabytes) and portable across
software environments [5].

The main disadvantages are threefold. First, the DNN is an approximation (albeit a good
one) to the “correct” (and default) way of evaluating the ∆NLL. Second, it does not retain
information about the systematic uncertainties encoded by the NPs, since the NPs are already
profiled away when generating the training set. Third, it needs an initial investment of roughly
50 million ∆NLL evaluations with NPs profiled away and a few hours of training on a GPU.

Therefore, for use cases that do not require exact NLL values or the systematic uncertain-
ties encoded by the NPs, an initial investment of sampling the profiled ∆NLL and training the
DNN yields a differentiable, fast, and portable approximation of the profiled ∆NLL of our
analysis to share with the community without losing information about any of the WCs.

References

[1] A.M. Sirunyan et al. (CMS), JHEP 03, 095 (2021), 2012.04120
[2] A. Coccaro, M. Pierini, L. Silvestrini, R. Torre, Eur. Phys. J. C 80, 664 (2020),
1911.03305

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., in Advances in Neural Information Processing Systems
32 (Curran Associates, Inc., 2019), pp. 8024–8035, http://papers.neurips.cc/pa
per/9015-pytorch-an-imperative-style-high-performance-deep-learnin
g-library.pdf

[4] TensorFlow Developers, TensorFlow (2023), https://doi.org/10.5281/zenodo.8
306789

[5] J. Bai, F. Lu, K. Zhang et al., ONNX: Open neural network exchange, https://github
.com/onnx/onnx (2019)

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.8306789
https://doi.org/10.5281/zenodo.8306789
https://github.com/onnx/onnx
https://github.com/onnx/onnx

	Introduction
	Learning the Likelihood Function
	DNN Validation: Comparison of DNN Likelihood Scans with Published Likelihood Scans
	Scanning Over Reparameterized Wilson Coefficients with the DNN
	Computational Performance of the DNN
	Discussion

