
Acceleration of a Deep Neural Network for the Compact
Muon Solenoid

Tarik Ourida1,∗, Wayne Luk1,∗∗, Alex Tapper1,∗∗∗, Marco Barbone1,∗∗∗∗, and Robert
Bainbridge1,†

1Imperial College London, South Kensington, London, United Kingdom

Abstract. There are ongoing efforts to investigate theories that aim to explain
the current shortcomings of the Standard Model of particle physics. One such
effort is the Long-Lived Particle Jet Tagging Algorithm, based on a DNN (Deep
Neural Network), which is used to search for exotic new particles. This pa-
per describes two novel optimisations in the design of this DNN, suitable for
implementation on an FPGA-based accelerator. The first involves the adoption
of cyclic random access memories and the reuse of multiply-accumulate opera-
tions. The second involves storing matrices distributed over many RAM mem-
ories with elements grouped by index. An evaluation of the proposed methods
and hardware architectures is also included. The proposed optimisations can
yield performance enhancements by more than an order of magnitude compared
to software implementations. The innovations can also lead to smaller FPGA
footprints and accordingly reduce power consumption, allowing for instance
duplication of compute units to achieve increases in effective throughput.

1 Introduction

The CMS (Compact Muon Solenoid) at the Large Hadron Collider (LHC) at CERN makes
use of a LLP (Long-Lived Particle) Jet Tagging Algorithm [1], inspired by the DeepJet Tag-
ging Algorithm [2], to search for new physics by tagging hadronic jets which stem from
exotic long-lived particles. The LLP Jet Tagging Algorithm (Figure 1) is a multi-class clas-
sifying DNN, passing 638 input features per jet through 12 banks of convolutional layers,
followed by 3 dense layers, with interleaved activation functions and dropout layers. The
model classifies jets of particles into one of four target classes: LLP jet, heavy-flavour quark
jet, light-flavour quark jet and gluon jet. Its architecture is highly computationally inten-
sive, not meeting real-time latency constraints for data selection systems when executed on
a CPU; while a hardware accelerated FPGA implementation would meet real-time require-
ments. This work presents an FPGA acceleration of the LLP Jet Tagging Algorithm, which
uses kernelisation to divide the algorithm into self-contained processing units, allowing sim-
ple orchestration of dataflow within the network and reuse of multiplication units.

This paper highlights the following two contributions:
∗e-mail: tarik.ourida17@imperial.ac.uk
∗∗e-mail: w.luk@imperial.ac.uk
∗∗∗e-mail: a.tapper@imperial.ac.uk
∗∗∗∗e-mail: marco.barbone19@imperial.ac.uk
†e-mail: r.bainbridge96@imperial.ac.uk



• Employing cyclic random access memories and reused multiply-accumulate operations as
opposed to fully parallelised convolution implementations.

• Storing matrices distributed over many RAM memories, grouping elements by index, as
opposed to standard methods of storing matrices whereby all data from a single matrix is
stored contiguously in memory.

The above optimisations do not affect the accuracy of the LLP Jet Algorithm.

Figure 1. LLP Jet Tagging Algorithm Forward Inference

2 Background

The planned High-Luminosity LHC upgrade [3] will cause a projected upscale in particle
collisions at the LHC, and therefore in data collection and processing requirements. The
LLP Jet Tagging Algorithm’s inputs are properties of a number of particles observed in the
aftermath of proton-proton collisions, sourced directly from the CMS detector. With protons
colliding at 40 MHz, there are petabytes of data to process per second, which will increase
tenfold with the scheduled High Luminosity LHC upgrade.

This very high throughput criterion requires the implementation of matrix multipli-
ers/convolvers heavily optimised for high throughput. This is required in order to establish an
LLP Jet Tagging Algorithm design suitable for deployment on the real time Level-1 trigger
[4], which requires a forward inference latency in the sub-microsecond range.

3 Serialised Cyclic RAM Multiply-Accumulate

The Serialised Cyclic RAM Multiply-Accumulate approach heavily reduces resource utilisa-
tion by use of floating point accumulators and cyclic RAM blocks; in some cases, a reduced
latency is also achievable. The resource utilisation saving can be invested in instance dupli-
cation as to scale up throughput. A cyclic RAM block can be envisioned as a fixed size RAM
whereby elements are read consecutively, cycling back to the start once the end is reached.

The architecture of the forward inference is depicted in Figure 1. The computationally
intensive sections of the model are the convolutional and dense layers. The method proposed



in this section can be employed for both convolutional and dense layers as they can both be
defined in terms of matrix multiplications; for brevity, the method will be demonstrated for
the convolutional layers only, but is trivially transferable.

Each convolutional kernel accepts two matrix inputs (input data and weight data) which
are to be convolved to produce an output matrix. A standard implementation is to instantiate
a bank of multipliers, followed by an adder tree, to compute one output value from one input
matrix row and one weight matrix row. These compute units can be instantiated multiple
times such that the total convolution can be performed in parallel, adhering to the "compute
in space" paradigm associated with FPGA development. The most unrolled implementation
that exploits the maximum amount of parallelism does not achieve the lowest latency among
the architectures considered due to the complex interconnects that cause higher propagation
delays, thus limiting the maximum frequency in which the design can operate at, and thus its
effective throughput.

By parallelising over either the input matrix, or weight matrix, but not both, as to generate
one output row as opposed to the entire output matrix, will yield a lower resource utilisation
due to the duplication of resources over only one output dimension, and will reduce the
complexity of the interconnects. Despite this complexity reduction, designs of this nature are
still taxing on the FPGAs resources, especially DSPs (Digital Signal Processors).

To circumvent the inherent issue of inputs fully connected to multiple compute units, the
input interface was reduced to a single word for the inputs and weights. By employing a
cyclic RAM element (RAM with read address port connected to a repeating counter) for the
input and weight data, the complexity in presenting contiguous memory locations is reduced.
This data configuration is coupled with a floating point accumulator, preceded by a two input
multiplier, which can encompassingly be rendered as a multiply-accumulate (MAC) opera-
tion. In the case of the LLP Jet Tagging Algorithm, the weights remain constant and are
stored in a constant valued cyclic RAM element (analogous to a ROM), negating the need
for an input weight data port. A smaller cyclic RAM is used to store only a single row of
input data, which is repeatedly iterated over until the weight RAM outputs its final value,
after which the process repeats with a new input row flushed to the input RAM (Figure 2).

Figure 2. Input and Weight Cyclic RAMs Chained to Dual Input MAC Unit



Due to the reduction in computational parallelism, the latency for producing the output
matrix data is increased, however, this design can be clocked at a higher frequency due to the
elimination of high fan-in/fan-out nets, thus heavily simplifying dataflow within the design.

The convolution between two matrices of dimension 16x4, requires 4 multiplications for
each of the unique pairings of rows between the two matrices, thus resulting in 16x16x4 =
1024 multiplications. Due to the transition from 1024 multipliers in the fully unrolled imple-
mentation to just 1, the resource utilisation is heavily reduced (Section 5.1). This presents the
opportunity to employ multiple MAC instances to decrease the latency. The single MAC im-
plementation accepts an input row (element by element to decrease the input interface width),
and convolves it with each weight row, in order to produce an output row. This process is
repeated for all input rows, with there being no inter-dependency between any computation
between two different input rows. Therefore, this design can be parallelised by instantiating
a MAC unit for each row of the input, for each of the three input types, with the implementa-
tion of each MAC being identical to one another, allowing for shared control logic (Figure 3).
Note that despite requiring the input matrix to be ingested one column at a time, the design is
still far from bandwidth limited.

Figure 3. MAC Units Parallelised Across Input Rows and Input Channels

The approach of using MAC units offers a far simpler implementation and correspond-
ingly reduced latency (when clocked at a higher frequency), indicating the advantage of in-
putting rows in a serial fashion and using an accumulators, as opposed to inputting a row
at once, and using a bank of multipliers, followed by a tree of adders. For convolutions



whereby the common dimension is very large, a serialised accumulate method may not offer
a latency reduction as compared to a parallel bank of multipliers, followed by an adder tree.
This is because the depth of the adder tree scales logarithmically with the common dimension
size, whereas the number of cycles for which the accumulator must run scales linearly with
the common dimension size. In the case of the block sizes used in this implementation, the
common dimension is small, thus the MAC implementation will achieve a higher throughput.

Another advantage offered by the MAC unit is that bias addition can be incorporated into
the unit for no additional latency cost. An accumulator, when reset, defaults to storing zero
in its accumulated value, but can instead be set to the corresponding bias associated with the
input row index, prefetched from a BRAM block holding bias values. The bias addition is
usually deferred to another kernel, but by integrating the bias addition into the convolution
kernel, this reduces the number of kernels in the dataflow design and the additional inter-
kernel hardware required for the orchestration of data between kernels.

4 Elementwise RAM Storage

The purpose of these optimisations are to simplify read logic by opting for a alternative
storage approach, yielding a reduced latency.

The primary data structure that propagates through a DNN is the matrix. Conceptually,
it is envisioned as a two dimensional grid of numbers, and it is common to implement their
underlying storage structure to resemble said grid to some degree. In many High Level Syn-
thesis (HLS) toolchains, one can instantiate a two dimensional memory element by declaring
a two dimensional array, however, it is worth considering what FPGA resources that maps to.

A common method of multiplying matrices of arbitrary size using fixed hardware is to
partition the two input matrices into smaller blocks of fixed size (with zero padding applied
where necessary), and passing these blocks to a convolver, after which the intermediary con-
volution results are summed and merged back into the desired output matrix.

In order to reuse the convolution, bias addition and activation function kernels, a buffer
is required to store matrix data and send blocks to their respective kernels. Instantiating
a two dimensional array of matrix elements will yield the employment of BRAM (Block
RAM) modules, as opposed to LUT-based memories, except in the case where the matrix
dimensions are very small. The matrix may possibly be partitioned over many BRAMs, as
their capacities are limited, incurring an additional processing overhead.

The nature in which (16x4) blocks are derived from a matrix is such that 4 consecutive el-
ements are extracted across 16 consecutive columns. If the matrix (when flattened), is stored
in row major order, reading the block from a BRAM module would result in 16 bursts of 4 cy-
cle reads. This can be made slightly more efficient by selecting wide dimensions for the block
size (e.g. 4x16), resulting in less read bursts, but of longer duration, for which the efficiency
benefit is only obtainable if BRAM blocks are configured with larger widths, to allow for the
effectively parallel acquisition of consecutive element data in one read cycle. Nonetheless,
this approach introduces additional complexities when extracting one block from the storage
structure used for the matrix, which is a fundamental function required for the orchestrated
marshalling of fixed size data throughout the design.

The double buffer method employs a primary and secondary buffer of equal sizes, allow-
ing the secondary buffer to be written to whilst the primary buffer is still being read from.
This method can be used to alleviate the complexity in the temporary storage of output ma-
trix blocks, which cannot be otherwise written to the primary buffer as the region in which it
spans contains input data that is still required for subsequent block convolutions. The double
buffer method does incur double the amount of BRAM and some additional complexity in the



paging mechanism, however the inefficiently ordered data still presents an inherent complex-
ity overhead. There is the additional issue that this logic must be instantiated for all potential
blocks, from which manifests a degree of inefficient utilisation of storage elements and read
complexity overhead as not all intermediary matrices (between layers) are of the same size
and thus do not partition into the same number of blocks.

Figure 4. Transition from Block Form to Elementwise RAM Storage

The proposed method of elementwise RAM block indexing transposes the natural view
which is taken upon the envision of a partitioned matrix. As opposed to grouping elements
based on proximity to one another (row wise, or even block wise), matrix elements can be
grouped by position in their block (see Figure 4). In doing so, one would need to instantiate
precisely 64 (16x4) RAM modules, one for each of the index positions in a 16x4 block.
One efficiency that arises is due to the number of storage elements remaining fixed between
convolutional layers, irrespective of the dimensions of the input and weight matrices. The
most valuable computational and resource saving derives from the heavily simplified read
mechanism. In order to obtain a 16x4 block, all 64 RAMs should be addressed with the same
value (block index) and the contents of the block will be presented at the read data ports of
the 64 RAM blocks. For convolution, there are only read operations to the RAM blocks,
and only writes to the input data matrix for each execution of a forward inference, hence
why simplification of the read mechanism presents significant computational and resource
savings.

5 Evaluation and Analysis

The methods outlined in sections 3 and 4 were evaluated for their latency and resource utili-
sation. All implementations were written using MaxJ [5], a Java-like dataflow oriented HLS



language by Maxeler Technologies. All testing was performed on a Xilinx Virtex Ultra-
Scale+ VU9P, connected via a PCIe interface to a Intel Xeon Gold 6154 host CPU clocked
at 3.00GHz.

5.1 Serialised Cyclic RAM Multiply-Accumulate

A convolution kernel accepting two 16x4 inputs and yielding one 16x16 output was instanti-
ated using each of the four methods shown in the table below. All latency values are expressed
as the time taken for output matrix to be obtained.

Single Column
Hardware Fully Partial MAC MAC

Design Unrolled Unroll Unit Units
f (MHz) 100 100 350 250

Latency (ns) 80.00 210.00 140.00 24.00
LUT (%) 26.86 13.24 1.08 17.31
FF (%) 21.61 16.88 1.07 19.22

DSP (%) 29.94 1.86 0.06 0.94
BRAM (%) 8.24 3.11 2.36 2.98

RU (%) 21.66 8.77 1.14 10.11

The implementations employing MAC units were able to meet timing for higher clock
speeds than the unrolled implementations. The increased latency for the partially unrolled
implementation compared against the fully unrolled implementation arises from the serial
fashion in which input rows are ingested; despite pipelining the design, the latency of the
fully unrolled design cannot be matched. The MAC based implementations both offer very
low resource utilisation, especially DSP usage, as a single floating point MAC unit requires 2
DSPs. This reduced resource utilisation is justified by the ability to share resources over rows
and channels. For the LLP Jet Tagging Algorithm, three columnwise MAC units should be
instantiated (see Figure 3), each with 25, 25, and 4 rows respectively, which when individu-
ally instantiated, yield a total resource utilisation of 41.23%. The additional inter layer logic
for the activation functions, flattening of the convolutional output layers, and instantiation of
the dense layers, further increases the resource utilisation from 41.23% to 69.51%.

5.2 Elementwise RAM Storage

A block marshalling kernel accepting 16x4 blocks as input, storing a 25x17 data matrix and
outputting a selected 16x4 block was instantiated using each of the four methods shown in
the table below. All latency values are expressed as the time taken to update region of data
matrix with inputted 16x4 block, and output a 16x4 block, after the block index has been
presented.

A latency reduction can be obtained by opting for a double buffer mechanism as opposed
to a single buffer, as the write method for the inputted 16x4 block is simplified (write to
secondary buffer) as opposed to the complex method used for the single buffer. The latency
for the elementwise RAM storage method significantly outperforms the other two, with a
latency reduction by a factor of at least 4. The most valuable advantage of the elementwise
RAM storage method lies in the heavily reduced resource utilisation, deriving predominantly
from the reduction in LUTs and FFs, attributable to the heavily simplified read mechanism.
The BRAM usage is only slightly less than the single buffer method, as the number of blocks



Hardware Single Double Elementwise
Design Buffer Buffer RAM Storage
f (MHz) 100 100 100

Latency (ns) 100.00 80.00 20.00
LUT (%) 1.65 3.38 0.71
FF (%) 6.43 13.22 2.90

DSP (%) 0.00 0.00 0.00
BRAM (%) 9.28 18.56 8.12

RU (%) 4.34 8.77 1.14

required for a full forward pass is constant irrespective of the implementation choice, and
cannot be further reduced.

5.3 Comparisons to Prior Implementations

A C++ implementation (compiled using g++with -O3 optimisations) of a convolution kernel
accepting two 16x4 inputs and yielding one 16x16 output took 780ns to produce a result when
running on a Intel Xeon Gold 6154 CPU clocked at 3.00GHz. Relative to the FPGA imple-
mentation of the same convolution kernel (outlined in section 5.1), a ∼ 32.5x latency decrease
is achieved, indicating the huge potential for FPGAs to be used to accelerate these large mod-
els such that they can be ran in real time, negating the need for offline post-processing.

6 Conclusions and Future Work
The approaches discussed in this paper propose alternate implementations to commonly per-
formed operations within machine learning algorithms (matrix storage and convolution); op-
erations used beyond the scope of the LLP Jet Tagging Algorithm, and outside the scope
of high energy physics applications. By careful consideration of the nature of the resources
available on an FPGA, it is possible to optimise designs to achieve performance enhance-
ments of up to an order of magnitude, whilst still benefiting from the productivity of adopting
HLS tools.

Future work involves further investigation of the duplication of MAC units for latency
reduction at the expense of increased resource utilisation, and an investigation into quantify-
ing such tradeoffs such that arbitrarily sized networks can be automatically configured as to
minimise latency and/or maximise throughput by selecting design parameters derived from
the matrix dimensions used in the network architecture.

References
[1] CMS Collaboration, Mach. Learn. Sci. Tech. 1, 035012. 45 p (2019), 1912.12238
[2] M. Stoye (et al.), Tech. rep., CERN, Geneva (2017), https://cds.cern.ch/record/
2293134

[3] G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, L. Rossi, High-Luminosity Large
Hadron Collider (HL-LHC): Preliminary Design Report, CERN Yellow Reports: Mono-
graphs (CERN, Geneva, 2015), https://cds.cern.ch/record/2116337

[4] Tech. rep., CERN, Geneva (2020), final version, https://cds.cern.ch/record/
2714892

[5] Maxeler, Maxcompiler, https:/www.maxeler.com/products/software/
maxcompiler/


