
Simulating Hadronization with Machine Learning

Michael K. Wilkinson1,∗ on behalf of the MLhad collaboration.
1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Abstract. Hadronization is an important part of physics modeling in Monte
Carlo event generators, where quarks and gluons are bound into physically ob-
servable hadrons. Today’s generators rely on finely-tuned phenomenological
models, such as the Lund string model; while these models have been quite suc-
cessful overall, there remain phenomenological areas where they do not match
data well. A machine-learning-based alternative called MLhad, intended ul-
timately to be data-trainable, can simulate hadronization by encoding latent-
space vectors, trained to be distributed according to a user-defined distribution
using the sliced-Wasserstein distance in the loss function, then decoding them.
The multiplicities and cumulative kinematic distributions of pions generated
with MLhad in this way match those generated using Pythia 8.
While this architecture has been successful, an alternative using normalizing
flows is convenient for generating non-pion hadrons and for taking advantage of
reweighting techniques to reduce computing time. Combined with new meth-
ods for reweighting the output of phenomenological models, this updated ar-
chitecture should prove convenient for comparing the output of MLhad and of
empirical models.

1 Introduction

The simulation of particle collisions can be considered in three blocks: (1) the hard process,
(2) the parton shower, and (3) hadronization, as shown in figure 1. The hard process is the
initial high-energy interaction between partons (quarks, gluons, electrons, etc.); hadroniza-
tion is the combination of quarks and gluons into hadrons; and the parton shower, also known
as "evolution", corrects the hard process with additional quark and gluon emissions. The
hard process and parton shower are well-determined by Quantum Chromo-Dynamics (QCD)
through perturbative calculations, but hadronization is in a non-perturbative regime and must
be simulated through the use of phenomenological models [1].

There are two widely used models used to simulate hadronization in general-purpose
event generators: (1) the Lund string model [2] and (2) the cluster model [3], both illustrated
in figure 1. In the string model (used by Pythia 8 [4]), partons are connected via QCD color
strings with linear potential; these strings are then iteratively split, emitting hadrons as long
as there is enough energy to do so. In the cluster model (used by Herwig 7 [5, 6]), partons
are pre-confined into proto-clusters, which then split via two-body decay. These splittings are
not determined by QCD (in either model), presenting an opportunity for contributions from
Machine Learning (ML).

∗e-mail: michael.wilkinson@uc.edu

time/energy
scale

MPIMPI

dσ̂0

∙
∙

∙∙

meson
baryon
antibaryon

·

hard interaction
resonance decays
matching/merging
FSR
ISR
QED
weak showers
hard onium
multiparton interactions
beam remnants
strings
primary hadrons
secondary hadrons
hadronic rescattering

block 1:
hard process

block 2:
evolution

block 3:
hadronization h1 h1

h2 h2

step 1

step 2

string cluster
Pythia,
MLhad

Figure 1. (Left) the three blocks of event generation; the abbreviations refer to Multi-Parton Interac-
tion (MPI), Final-State Radiation (FSR), Initial-State Radiation (ISR), and Quantum Electro-Dynamics
(QED); the cross-section of the hard process is dσ̂0. (Right) the two primary hadronization models
(used in block 3); in step 1, a quark qi and an anti-quark q̄i, each with energy E and three-momentum p,
are connected either by a linear QCD potential (string model) or by pre-confinement (cluster model); in
step 2, this connection is iteratively broken by the creation of a new quark q j and anti-quark q̄ j, which
combine with qi and q̄i to form one or more hadrons with energies Eh and three-momenta ph.

MLhad is a novel ML-based approach to simulating hadronization using Neural Networks
(NNs). It is currently trained on Pythia 8 simulations and relies on the Lund string model, but
ultimately, it should be adaptable to train only on experimental data. Its original architecture,
used to simulate pion emissions, is described in section 2. The benefits of reweighting simu-
lated events and the calculation of such weights in hadronization are described in section 3.
An updated MLhad architecture, which will be used to simulate non-pion emissions and take
advantage of reweighting techniques, is described in section 4.

2 MLhad with cSWAE

2.1 cSWAE Architecture

The original version of MLhad1 trained a conditional Sliced-Wasserstein Autoencoder
(cSWAE) [7–9], as shown in figure 2. In the cSWAE architecture, the encoder NN ϕ takes
a vector of observables xi and a vector of condition labels ci and returns a latent-space vec-
tor z̃i = ϕ(xi, ci). The decoder NN ψ takes z̃i and ci and returns a vector of observables
x̃i = ψ(z̃i, ci). The loss function minimized in training is

L(ψ, ϕ) = LSW +Lrec (1)

where LSW is the sliced-Wasserstein distance and Lrec is the reconstruction loss [7]. The
sliced-Wasserstein distance becomes smaller as the distribution of z̃i becomes more similar
to a user-defined target latent-space distribution I(zi, ci). The reconstruction loss is a measure

1A public repository with the code, which depends heavily on the Pythia 8, PyTorch, and scikit-learn libraries,
as well as documentation and usage examples, can be found at https://gitlab.com/uchep/mlhad.

of the differences between xi and x̃i, defined as

Lrec =
1

Ntr

Ntr∑
i=1

 1
Q

Ne∑
k=1

(
x(i)

k − x̃(i)
k

)2
+

Ne∑
k=1

∣∣∣x(i)
k − x̃(i)

k

∣∣∣ , (2)

where Ntr is the size of the training set, Q is a user-defined constant, and Ne is the size of the
xi and x̃i vectors.

NNNN
𝑝! or 𝑝"

𝐸

𝑝! or 𝑝"

observable
𝑝! or 𝑝"

latent variable
(arbitrary)

latent space

condition
𝐸

Figure 2. (Top) the cSWAE architecture used by MLhad, adapted from reference [7]. Two NNs, an
encoder and a decoder, are trained to minimize LSW + Lrec, the sum of the sliced-Wasserstein distance
and the reconstruction loss. The encoder maps an observable xi (pion transverse momentum pT or
longitudinal momentum pz) to a latent variable zi that follows a user-defined distribution. The decoder
maps back from the latent space to the observable space. The observables are given a label ci indicating
the energy E of the pion. (Bottom) the action of the encoder in the cSWAE architecture, adapted from
reference [7]. The encoder maps the pion pT or pz to a location in latent space determined by the pion
energy.

The use of the sliced-Wasserstein distance in the loss function allows the user to choose
an arbitrary latent space [7]. The region of this space to which z̃i is mapped is determined by
the value of ci, as shown in figure 2. While I(zi, ci) need only be sampleable for the cSWAE
architecture to function, its form can impact the performance of the architecture signficantly;
in particular, the more similar it is to the distribution of xi, the better [7].

2.2 cSWAE for hadronization

To make use of the cSWAE architecture in MLhad, the training observables xi are sets of
either the longitudinal momentum pz or transverse momentum pT of Pythia 8-generated
first-pion emissions [7]. While this version of MLhad treated pz and pT as uncorrelated (that
is, separately), the same architecture could be used to treat them together, thus taking any
correlations into account. The generated emissions used in training are at a fixed initial string
energy Ei = 50 GeV, used as the condition label ci. The decoder ψ can then be used to
generate a range of potential values for pz or pT for a given Ei.

The cSWAE decoder is paired with the Pythia 8 flavor selector to generate hadrons, where
the kinematics are determined by the decoder and the flavor by the flavor selector [7], as
shown in figure 3. (Ultimately, the Pythia 8 flavor selector could be replaced with an ML-
based, data-trained model.) A random value is sampled from I(zi, ci) and passed to the de-
coder along with the energy label ci. A value of pz or pT is then randomly selected from the
range produced by the decoder and, by imposing the conservation of energy and momentum,
used to determine the four-momentum of the emitted hadron and of the remaining string. The
flavor of the string is passed to the Pythia 8 flavor selector, which determines the flavor of
the hadron and of the remaining string. This process is repeated iteratively until the energy
of the remaining string falls below 5 GeV.

Pythia

NN

Impose 𝐸/𝑝
conservation

Figure 3. Generating hadrons using the cSWAE decoder and the Pythia 8 flavor selector, adapted from
reference [7]. The flavor of a string fragment si is passed to the Pythia 8 flavor selector FS, which
determines the flavor of the emitted hadron hi and therefore also of the remaining string fragment si+1.
Meanwhile, the energy of the string fragment Ei determines the condition label ci and the distribution
from which a random variable zi is sampled, both of which are passed to the cSWAE decoder D. The
decoder generates a range of possible hadron pz or pT values, from which one is randomly selected. The
imposition of energy and momentum conservation determines the four-momentum of the hadron phi and
of the remaining string fragment psi+1 . The string fragment is boosted to its center-of-mass frame by a
Lorentz transformation Λ prior to each emission. The emission process ends when the center-of-mass
string energy falls below some pre-determined cutoff value Ecut = 5 GeV.

The properties of hadrons generated in this way are found to be distributed similarly to
those generated by Pythia 8 using the analytic Lund string model; examples are shown in
figure 4. The average number of hadron emissions from a single string is the same when
using MLhad as it is when using Pythia 8, and, remarkably, the kinematics of emitted pions
produced in Pythia 8 are faithfully reproduced by MLhad even at energies on which it was
not trained. (The discrepancy at short chain lengths is a consequence of differences in the
handling of the first emissions, as described in section 3 of reference [7].) The full validation
of MLhad using this architecture can be found in reference [7].2

2The computation time required for hadronization using MLhad vs. using pure Pythia 8 is highly model-
dependent, and its analysis is beyond the scope both of reference [7] and of these proceedings. It should be noted
that, as is common for ML-based computations, the speed of MLhad generally improves when running on GPUs
rather than CPUs.

Figure 4. (Left) the number of hadrons produced from a single string (in a sample of 104 strings) before
falling below the cutoff energy for Pythia 8 (blue) or MLhad (orange). (Right) the pz distributions of
pions generated using MLhad with string energies different from that on which it was trained (50 GeV),
compared with those generated using Pythia 8 (“Target”). Taken from reference [7].

3 Reweighting Pythia 8 events

Event generation is time consuming, so it is beneficial to simply calculate per-event weights
rather than to regenerate whole datasets, as shown in figure 5. This principle can be applied
to the hadronization step in Pythia 8 using a modified accept-reject algorithm, allowing the
consequences of varying the parameters of the Lund string model to be explored while gener-
ating significantly fewer datasets [10]. An example of the results of this procedure is shown
in figure 6.

1 2 3 4 5 6 …Event:

w=1 w=1 w=1 w=1 w=1 w=1

w=1 w=1 w=1 w=1 w=1 w=1

w=1 w=1 w=1 w=1 w=1 w=1

par=i

par=j

par=k

…

…

…

Sa
m

pl
e

w=1
wj
wk

w=1
wj
wk

w=1
wj
wk

w=1
wj
wk

w=1
wj
wk

w=1
wj
wk

…par=i

Sa
m

pl
e

Instead of generating three
samples with weight=1,
generate one sample with
weight={1, wj, wk}

0 20 40 60 80 100
Number of variations

0

2

4

6

M
ea

n
tim

e
pe

r e
ve

nt
 [m

s]

Fit: 0.28 + 0.05 × x
Means

Figure 5. (Left) the difference between regenerating and reweighting. (Right) an example of the av-
erage time required to generate a single event as a function of the number of alternative hadronization
parameter values calculated during the generation, taken from reference [10].

4 MLhad with NFs

An updated version of MLhad is being prepared using Normalizing Flows (NFs) instead of
the cSWAE architecture in order to take advantage of reweighting. As shown in figure 7,

0.0

0.1

0.2

A
.U

. a = 0.30

25 50
charge multiplicity

0.0

2.5

w
′ /e

a = 0.55

25 50
charge multiplicity

a = 0.76
abase = 0.68

w′

e

25 50
charge multiplicity

Figure 6. Event charge multiplicity when the Lund parameter parameter a is varied using different
methods, taken from reference [10]. Distributions labeled e were generated with the value of the pa-
rameter a explicitly set to 0.30, 0.55, and 0.76. Those labeled w′ were all taken from a reweighted
sample generated with a = abase = 0.68.

NFs work by transforming a probability distribution, typically a Gaussian, into some desired
distribution by learning a sequence of differentiable, invertible functions f j:

pn(zn, ci) = p0(z0)
n∏

j=1

∣∣∣∣∣∣det
(
∂ f j(z j−1, ci)

∂z j−1

)∣∣∣∣∣∣−1

, (3)

where z j is a latent variable, zn is distrubted according to a target distribution pn, z0 is dis-
tributed according to a Gaussian distribution p0, ci is a condition label, and n is the number
of functions f j (learned by NNs). NFs can therefore learn a log likelihood directly:

log (pn(zn, ci)) = log (p0(z0)) −
n∑

j=1

log

∣∣∣∣∣∣det
∂ f j(z j−1, ci)

∂z j−1

∣∣∣∣∣∣ . (4)

(See, e.g., reference [11] for a derivation of this in the context of ML.) The ratios of likeli-
hoods can then be used to reweight events generated with different NFs.

An NF can be used for hadronization in much the same way as a cSWAE, as shown in
figure 8, but since it learns the likelihood directly, its outputs can be easily reweighted, as
shown in figure 9, saving computing resources.

5 Conclusions

Machine learning can be used to generate the kinematics of hadrons simulated using the Lund
string model. The cSWAE architecture has been shown to be well-suited to this task [7], but
there are various computational benefits associated with switching to an architecture based on
normalizing flows. Among these are the ability to use reweighting techniques to avoid time-
consuming regeneration of events. Coupled with the use of reweighting to compare values
of phenomenological hadronization parameters [10], this could allow for the computationally
inexpensive comparison of ML-based and phenomenological-based models of hadronization
in particle collisions.

NN NN NN NN

Start with Gaussian, want to
transform into observable
distribution

NFs learn likelihood directly
without training separate
Encoder and Decoder

Each NN in the NF learns a
differentiable, invertible
function 𝑓!, which together
convert from 𝑝" 𝑧" to 𝑝# 𝑧#

Figure 7. The architecture of NFs, adapted from reference [12]. The flow consists of k NNs that
learn functions fi that transform latent variables zi−1 into latent variables zi, which follow a probability
distribution pi(zi). The NNs should be trained to maximize the similarity between the distribution of
the output variable pk(zk) and that of the target variable x.

Figure 8. Using an NF as the generator G of hadron kinematics. Compare to figure 3. The condition ci

passed to G specifies the mass of the hadron mi and the energy of the string Ei.

References

[1] A. Buckley et al., Phys. Rept. 504, 145 (2011), 1101.2599
[2] B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rept. 97, 31 (1983)
[3] B. Webber, Nuclear Physics B 238, 492 (1984)
[4] C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, P. Ilten, L. Lönnblad,

S. Mrenna, S. Prestel, C.T. Preuss et al., SciPost Phys. Codebases p. 8 (2022),
2203.11601

[5] M. Bahr et al., Eur. Phys. J. C 58, 639 (2008), 0803.0883
[6] J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), 1512.01178
[7] P. Ilten, T. Menzo, A. Youssef, J. Zupan, SciPost Phys. 14, 027 (2023), 2203.04983
[8] S. Kolouri, P.E. Pope, C.E. Martin, G.K. Rohde, Sliced-wasserstein autoencoder: An

embarrassingly simple generative model (2018), 1804.01947

0 5 10 15 20
Number of emissions

0.000

0.025

0.050

0.075

0.100

0.125

0.150

A
.U
.

Nominal

Perturbed

Reweighted nominal

Figure 9. The number of hadrons produced from a single string before falling below the cutoff energy
using a preliminary NF-based version of MLhad. The nominal NF was trained on a Pythia 8 simulation
with the Lund parameter b set to 0.98. The perturbed NF was trained with b = 0.80. The ratio of the
likelihoods learned by these two NFs was used to reweight the nominal distribution, causing it to align
with the perturbed one.

[9] I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders (2019),
1711.01558

[10] C. Bierlich, P. Ilten, T. Menzo, S. Mrenna, M. Szewc, M.K. Wilkinson, A. Youssef,
J. Zupan (2023), 2308.13459

[11] G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshminarayanan,
Journal of Machine Learning Research 22, 1 (2021), 1912.02762

[12] J. Riebesell, K. Sachdeva, J.E. Johnson, F. Rozet, AifuHan, B. Ahn, H. Wang, H. Pour-
bozorg, H. Shon, J.F. Crenshaw et al., janosh/awesome-normalizing-flows: v1.0.0
(2023), https://doi.org/10.5281/zenodo.8170087

