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Abstract. We developed a first prototype of an end-to-end machine learning

based simulation framework for arbitrary analysis ntuples at the CMS experi-

ment. Such a framework, called FlashSim, was capable of simulating a wide

variety of physical objects with good performance on 1d distributions, correla-

tions and desired physical content when compared to the current state-of-the-

art simulation. Current methods are based on MC techniques, computationally

expensive and requiring a long time to compute. Our prototype was trained

to replicate the samples from state-of-the-art methods through the use of the

Normalizing Flows algorithm. It showed compatible results with a speedup of

several orders of magnitude. This type of approach opens the way to general,

analysis agnostic simulation frameworks which may be able to tackle the chal-

lenges of the simulation needs for HL-LHC and future collaborations.

1 Introduction

The simulation necessities of HEP collaborations are expected to increase rapidly as we reach

new frontiers in energy and luminosity. In CMS [1], the increasing need for full simulation

samples is due to various factors, such as the growing amount of experimental data that we

need to represent with our simulated samples, or the need for alternative, non-statistically

limited samples for systematic variations.

These problems are expected to become even more relevant at the HL-LHC when the

trigger rate will increase and the time needed for fully simulating an event will grow as a

consequence of the higher number of pile-up events.

Current state-of-the-art frameworks for HEP simulation such GEANT4 [2], rely on numerical

MC methods, which are very accurate but expensive in time and computational resources.

Fast and accurate simulation frameworks are needed to successfully tackle the future

challenges. Currently, CMS uses two frameworks for fast simulation: FastSim produces

detailed CMS event descriptions, a fast-simulated “AOD” event (about 500kb/event), that

can be employed by any analysis, either directly or through the derived MINIAOD [3] and

NANOAOD [4] formats. The second tool, Delphes, instead uses parametric smearing of

generator level information. It produces high-level descriptions of an event without any detail
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Figure 1: A comparison between the steps of the various simulation frameworks in CMS.

of detector level quantities, i.e., at a similar level of the NANOAOD format.

Novel approaches can take advantage of Machine Learning, which is expected to provide

us with both the accuracy and the speed we need. Countless application have already been

proposed and explored in the various experiments.

In the present work we introduce a new simulation framework, named FlashSim, based

on the Normalizing Flows ML generative algorithm. It aims to directly produce NANOAOD

format samples from generator level information, using generic ML generative techniques

rather than a handcrafted, process/analysis specific model. Such an approach sits in between

the two existing fast simulation toolkits in terms of detail of the event information, and it is

expected to be faster than both of them, especially when accelerated with GPUs. The work

presented in this document is a continuation of what was started by the authors in [5]. A

similar approach has been since then presented by the ATLAS collaboration in the context of

photon simulation in [6]. A more in depth discussion of the present work is also available as

a public CMS Note [7].

2 End-to-end simulation with Normalizing Flows

We present the prototype of a general, flexible simulator, not tailored to specific analyses.

This is possible thanks to the existence of a common high-level format for analysis (the

NANOAOD), that reduces the number of variables to simulate from several thousands to

few hundreds; and the recent progress in generative AI, especially in the new algorithm of

Normalizing Flows (NF) [8].

The idea behind the FlashSim is to go directly from the generator-level content of an event

to its NANOAOD representation. This is illustrated in the Figure 1.

One difference compared to typical AI/ML sample generation, e.g. image generation,

is that we need to condition the generation on some previous information. That is, we do

not want to simulate a generic CMS event but the CMS event corresponding to some given

generator level input.

Hence, the natural factorization for the simulation is to go one by one on the various objects,

using generator level representation of those objects as conditioning information.

Each object is simulated by a so-called functional unit, a transformation implemented by

the Normalizing Flows algorithm . At first order, the various units are independent, each tak-

ing as input only the relevant physical information for the simulation of its target. However,

it may still be necessary to capture correlations that go beyond the per physics object factor-

ization. In order to catch these additional correlations we plan to run the functional units in

a chain, so that later units can not only access the generator level information but also the

reconstruction information of the previous units.
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Figure 2: Two out of 17 1D-distributions targeted for the jets. As an additional measure of

convergence, we report the Wasserstein distance (ws) between the two empirical distributions.

As an example, we can consider the Missing Transverse momentum (MET), i.e. the momen-

tum carried away by a non-interacting particle. A MET functional unit, not yet implemented,

would hence need to take as input not only the generator neutrinos but also, for example, the

difference in reconstructed versus generated visible momentum, so that the unit itself will

only add the effect of unclustered energy.

The final ML models are large, averaging tens of millions of trainable parameters. Despite

this, the loss function proved very stable when compared to that of other popular generative

algorithms (e.g. GANs). We relied on the Pytorch [9] implementation of Normalizing Flows

developed in the package nflows [10].

3 Functional units and results

We discuss the various results obtained for each functional unit. The details about the training

and the implementation of each functional unit are discussed in detail in a public CMS Note

[7].

3.1 Generator matched AK4 Jets

Figure 2 shows the results of this training comparing the distributions of the Jet pT and the

btag CMVA score between FullSim and FlashSim. In Figure 3 the same comparison is made

for various b/c-tagging algorithms as well as their pair correlations: it is interesting to notice

that while FlashSim has no information about the underlying physics that makes some taggers

correlated (for example the presence of a secondary vertex), it can correctly reproduce the

correlations between different types of taggers.

In order to verify that the model is also learning to properly condition the distribution

with the generator information we studied how the btag variables depends on the jet flavour

and how the jet response changes as a function of the transverse momentum. Figure

3 compares the efficiency versus mis-tag curve for one of the b-tagging discriminators

DeepCSV in FullSim, FastSim and FlashSim: FlashSim is much closer to FullSim than

FastSim, hence requiring scale factor closer to unity if used in analysis.

Similarly in Figure 4 a comparison of the jet response (bias and standard deviation) is shown

for the three types of simulations, again with FlashSim perfectly tracking the momentum
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Figure 3: (Left) Comparison of FlashSim versus FullSim for various b- and c-tagging algo-

rithms. On the diagonal di-distributions of the individual variables are shown while the other

plots show the correlations among pairs of variables. (Right) Efficiency versus mis-tag (i.e.

ROC) for the b-tag algorithm DeepCSV comparing fast, full and flash simulation.
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Figure 4: Profile histogram of the jet response (top) and resolution (bottom) as a function of

the momentum of the generated jet.

dependency of both the bias and the resolution.

3.2 Fake jets

We call fake jets those reconstructed jets that do not have a corresponding generator-level

jet. In this case by definition there is no generator jet to start from. As we do not want to

simulate PileUp (PU) events generating minimum bias events, we need FlashSim to learn

how to produce a variable number of jets with the proper correlations.

In order to generate a variable number of fake jets we use the autoregressive conditioning

without permutations, learning the target observables of one fake jet at a time, sorted by

pT . In this way we can train a model that can produce up to N (10 in our tests) jets with a

single fixed model. For events with less than N jets the transformations affecting the missing

jets are masked so that the relevant weights are not updated. With this architecture, in the

simulation phase, the properties of the first jets will be used in the conditioning of the next

jets but not vice-versa.

While in training N is fixed by the number of fakes, for the simulation step such number
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Figure 5: (Leftmost) The target kinematic variables for the leading fake jet of each event

show good 1d convergence and capture the correct correlations. (Right) Difference in φ (left)

and pT (right) between the first and second fake jets in events with at least two of them.

should be randomly drawn given the PU related variables.

The results of the early prototype are shown in Figure 5 where the kinematic variables

and their correlations for the leading fake jet are shown. Figure 5 show the correlation that

the network learns between the first and second jets, in particular it should be noticed that the

φ of the second jet is correctly anticorrelated with the one of the leading jet (given that PU

events tend to be balanced in the transverse plane). Similarly the pT difference plot shows

that the model is correctly learning to produce pT sorted fake jets and is correctly modeling

the transverse momentum difference.

3.3 Fat jets

In this case we verified the behaviour of the conditioning looking both at the Particle Net dis-

criminator as a function of the number of b and separating signal (di-Higgs) and background

(QCD multijet) events (Figure 6). In addition the softdrop mass is shown separately for signal

and background in Figure 6. The small deviations from FullSim can be explained due to the

lower statistics available for this training process (order of 100k Phase-2 full-sim events, to

be compared with several millions of events available for tt̄ Run2 samples used for the other

objects).

3.4 Muons

In Figure 7 we show the correlations between the 3D impact parameter and the quadrature

sum of the transverse and longitudinal ones: even in this case, where FlashSim has no physics

knowledge of these variables (there is no impact parameter of the generated muon passed as

input) it correctly models the correlation between these two ways of defining the impact

parameter. In the same figure we also verify the goodness of conditioning comparing the

impact parameter distributions for different status flags of the generated muons.

3.5 Electrons

The generator level matching of electrons to generator-level particles in NANOAOD is done

with no particular selection on the GenPart status, resulting in multiple associations when a
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Figure 6: (Left) ParticleNet bb versus QCD discriminator distributions for 0,1 and 2 b-in-jet

(left) and for the signal HH → 4b versus QCD background (right). The small differences

from the FullSim target can be explained as an effect of the low statistics during training.

(Rightmost) The softdrop mass is being correctly modeled into its two components for back-

ground and signal.
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Figure 7: Correlations of different definition of the impact parameters (left) and dependency

of the 3D impact parameter from the process generating the muon (right).

GenPart appears in multiple copies. For this reason we implemented a dedicated matching of

reconstructed to generated electrons restricting to particles with the lastCopy flag set.

Results on 1D distributions and correlations are shown in the corner plot of Figure 8.

We can see that FlashSim is obtaining a good closure on FullSim. Even in this case the

correlations of shower shape and ID variables are correctly learned despite the complete lack

of knowledge of the underlying physics process. The goodness of the conditioning can be

instead appreciated in Figure 8 that shows how the distribution of the lepton isolation varies

depending on the status flag of the generated electron.

3.6 Benchmark analysis level plots

We generate entire datasets of tt, Drell-Yan, EWK LLJJ and signal (H → µ+µ−) processes,

which can be used to repeat the basic steps of a recent analysis to demonstrate the feasibility

of our model in a real-case scenario. Events containing both flash-simulated muons and

jets are processed with the analysis chain of the Higgs to di-muon VBF analysis (presented
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Figure 8: (Left) Comparison of FlashSim versus FullSim for various supercluster variables.

On the diagonal di-distributions of the individual variables are shown while the other plots

show the correlations among pairs of variables. (Right) The isolation for electrons as a func-

tion of the gen electron status flags.

in [11]) in order to verify that the approach we follow produces simulated events usable at

analysis level. The DNN used to separate signal from background is calculated starting from

flash-simulated quantities and compared between FullSim and FlashSim of the same samples.

The DNN uses as inputs multiple derived variables, including some that are correlating the

di-jet part of the VBF event with the di-muon part from the Higgs decay. The results are

shown in Figure 9.

In addition, FlashSim has been tested to verify that it can be used when a systematic estimate

requires evaluating different generators. In Figure 9 (right) we show the effect of evaluating

a different signal model with a fully simulated sample or with FlashSim. In the latter case,

rather than directly using FlashSim we apply a correction factor full/flash obtained from the

original signal model. We can see that using this additional correction FlashSim systematic

estimate perfectly closes with the FullSim one.

4 Conclusions

We have introduced a prototype for end-to-end simulation of HEP events through novel ma-

chine learning techniques. This approach results in several orders of magnitude of speedup

(100s/kHz of generation speed per object) when compared to traditional approaches to sim-

ulation, while maintaining a good level of accuracy for 1d distributions, correlations and

conditioning.

The HEP simulation field is rapidly evolving and moving towards the adoption of ML-

based generators across collaborations. However, to the best of our knowledge, this is the

first example of a general, analysis-agnostic generator, validated on a wide variety of physical

objects and a real analysis benchmark.

The task of tuning and training the various functional units in an unbiased way requires a

great effort. Care is needed to ensure roboust modeling of discrete distributions and tails in

the continuous distributions. Additionally, multiple trainings would need to be repeated each



3−10

2−10

1−10

1

10

E
v
e
n
ts TTJets FlashSim TTJets FullSim

EWK LLJJ FlashSim EWK LLJJ FullSim

HMM POWHEG FlashSim HMM POWHEG FullSim

Simulation Preliminary CMS

0 0.5 1 1.5 2 2.5 3 3.5 4

VBF DNN Output
0

0.5

1

1.5

ra
ti
o

310

410

E
v
e
n
ts POWHEG flash aMC@NLO flash

POWHEG aMC@NLO

POWHEG flash

aMC@NLO flash*POWHEG

Simulation Preliminary CMS

0 0.5 1 1.5 2 2.5 3 3.5 4

VBF DNN Output

0.6

0.8

1

1.2

1.4

ra
ti
o

Figure 9: On the left, the comparison of analysis DNN output using both muons and jets

information between flash and full simulation on tt̄ sample (same process used in training,

different events) and signal events (not seen during training). On the right, comparison of

systematic shape variations calculated with fully simulated alternative samples and estimate

obtained from FlashSim.

time the CMS collaboration releases a new NANOAOD campaign. Finally, this approach is

completely dependent on the existence of high-quality, well tuned Full Simulation samples

based on GEANT4.

Despite this, no significant obstacles stand in the way of building a complete framework.

Such a tool may help greatly when facing the future demands of collaborations in the HL-

LHC era, considerably reducing the computational needs and the time taken by simulation

tasks.
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