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Abstract. Synergies between MAchine learning, Real-Time analysis and
Hybrid architectures for efficient Event Processing and decision-making
(SMARTHEP) is a European Training Network, training a new generation of
Early Stage Researchers (ESRs) to advance real-time decision-making, driving
data-collection and analysis towards synonymity.
SMARTHEP brings together scientists from major LHC collaborations at the
frontiers of real-time analysis (RTA) and key specialists from computer science
and industry. By solving concrete problems as a community, SMARTHEP will
further the adoption of RTA techniques, enabling future High Energy Physics
(HEP) discoveries and generating impact in industry.
ESRs will contribute to European growth, leveraging their hands-on experience
in machine learning and accelerators towards commercial deliverables in fields
that can profit most from RTA, e.g., transport, manufacturing, and finance.
This contribution presents the training and outreach plan for the network, and
is intended as an opportunity for further collaboration and feedback from the
CHEP community.

1 Introduction

The Synergies between MAchine learning, Real-Time analysis and Hybrid architectures for
efficient Event Processing and decision making (SMARTHEP) European Training Network
is an EU Horizon-funded training network, with a focus on the development of expertise
in real-time analysis (RTA) techniques through applications to High Energy Physics (HEP)
research and industry. The network centres around the training of 12 Early Stage Researchers
(ESRs) between September 2022 and September 2025.

2 SMARTHEP as a European Training Network

As a European Training Network (ETN), the primary aim of the network is in training ESRs,
whilst deepening synergies between HEP and industry. The network takes a novel approach
to building such synergies, structuring each ESR position (a 3 year period of doctoral study)
around academic and industrial secondments. To achieve this, the network is formed of a
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series of partnerships between universities, research institutes and organisations in industry,
as listed in Table 1.

Category Partners
Universities Lund University, Sorbonne University (LPNHE & LIP6), Technische Uni-

versität Dortmund, University of Bologna, Université de Genève, Univer-
sity of Heidelberg, University of Helsinki, University of Manchester, Uni-
versidade Santiago de Compostela (IGFAE), Vrije Universiteit Amsterdam

Research institutes CERN, CNRS, NIKHEF
Industry partners IBM France, Lightbox, Point 8, University of Manchester Institute for Data

Science and AI, Verizon Connect, Ximantis

Table 1. The member institutes and partners of the SMARTHEP network.

The network is formally structured as 7 Work Packages (WPs), laid out in Figure 1.
WP1 “Management” covers the management of the network by the Project Manager/Project
Coordinator/Executive Board. WP2 “Training” sets out training and development of partic-
ipants, by both network partners and external training providers. WP3 “Machine learning
& advanced data analysis” develops machine learning (ML) techniques for use in real-time
environments. WP4 “Hybrid architectures” focuses upon the deployment of non-CPU com-
puting architectures in acceleration of data processing. WP5 “Decision-making in research
and industry”, applies WP3 and WP4 to develop RTA-based decision-making technologies.
WP6 “Monitoring and discoveries” also applies WP3 and WP4 to RTA approaches in data
analysis. WP7 “Dissemination and communication of results” publishes and propagates the
results produced in WP6 and WP7.

WP7: Dissemination and communication of results

WP3: Machine learning & advanced data analysis WP4: Hybrid architectures

WP1: Management

WP2: Training

WP5: Decision-making in research and industry WP6: Monitoring and discoveries

Key:    █ Organisation        █ Techniques & tools        █ Applications        █ Results

Figure 1. The structure of work packages within the SMARTHEP network. WP1 and WP2 define the
organisation of the network; WP3 and WP4 introduce the techniques and tools of real-time analysis
to the network; WP5 and WP6 use said techniques and tools to produce results for HEP and industry;
WP7 makes these results available and promotes their wider use and adoption.

The network has a particular focus on physics at the Large Hadron Collider (LHC). Each
ESR is thus affiliated to one of the four major experiments based at the LHC: ALICE, ATLAS,
CMS and LHCb. The network duration coincides with Run 3 of the LHC (2022-2025), with
many of the ESR projects framed in this context.

A unique feature of the network is the extensive cooperation between HEP and industry
across all ESR positions. RTA approaches have seen significant adoption in industry in recent
years, with many organisations turning to RTA as a means to handle the challenges of “big
data”. Industry has thus seen a swift growth in RTA expertise which can benefit symbiotically
from such cooperation.



3 Real-time analysis

HEP and industry share a common challenge—the rapid processing of large quantities of
data [1]. Recent advances in computing, in particular in the areas of machine learning and hy-
brid architectures, have enabled the possibility of processing data in real-time, i.e., as data is
collected (also commonly referred to as “online” processing) [2]. By processing data online,
resources (computing power, storage space, energy, etc.) can be saved and further insights
can be obtained from the data recorded, as shown in Figure 2.

Raw data Real-time analysisTraditional analysis

Record data and process offline Process data online first, then record

Figure 2. Traditional and RTA approaches to data processing. Traditional approaches rely on recording
all data and processing this offline; in RTA, data is processed as it is produced, recording only the
relevant portions, enabling greater volumes of processed data to be stored.

RTA techniques have seen widespread adoption across HEP, in particular amongst trigger
and data acquisition (TDAQ) systems. Since it is not possible to record a full detector readout
and carry out event reconstruction at the LHC collision rate of 40 MHz, triggers must be de-
vised to select only those events relevant to the physics goals of an experiment. Such triggers
conventionally consist of a hardware system making coarse decisions from partial detector
readout, and a staged software trigger, applying gradually more finely-grained selections with
increasingly more detailed reconstructions of events.

3.1 Machine learning

ML, a catch-all term for a family of techniques and technologies wherein algorithms are
conditioned to analyse data, enables rapid decision-making and pattern recognition across a
broad range of use cases [3]. In HEP, the adoption of ML began with classifiers for offline
physics analysis, later widening to a variety of classification and pattern recognition/anomaly
detection techniques for use online and offline [4].

ML classifiers such as Boosted Decision Trees (BDTs) and Neural Networks (NNs) are
commonly employed in HEP. The use of BDTs in signal selection for offline physics analysis
has become standard practice, e.g., suppression of combinatorial background in the LHCb
experiment measurement of the B0

s − B̄0
s oscillation frequency [5]. Classifiers can also aid

tasks such as particle identification within event reconstruction, e.g., the CMS boosted event
shape tagger, a NN trained to discriminate between possible t, W±, Z0 and H candidates
within an event [6]. ML classifiers also find many decision-making applications in industry,
for example in the detection of malicious communications [7].

ML techniques can also be applied to pattern recognition and anomaly detection—tasks
which cannot otherwise be realistically performed on the scales of data presently being anal-
ysed. In industry, this is applied intuitively to fraud detection, wherein even subtle changes in
transaction data can indicate fraudulent activity [8]. In HEP, such anomaly detection can be
applied to searches, for example the ATLAS search for resonant decays to a Higgs boson [9].



3.2 Hybrid computing architectures

Central Processing Units (CPUs) have been used ubiquitously across many fields of re-
search including HEP. CPUs are designed for general purpose computation (i.e., a single
processor capable of performing a wide range of tasks with significant variety in comput-
ing/memory requirements), with large on-board memory and often multiple processing cores.
However, recent advancements in computing have led to the development of accelerators,
such as Graphical Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs),
Application-Specific Integrated Chips (ASICs), etc. Accelerators are designed to perform
specific tasks significantly faster than a CPU, by virtue of their structural design as repre-
sented in Figure 3. A hybrid computing architecture is thereby a system formed of 2 or
more of the categories of processing units discussed: by designing the computing architec-
ture around the nature of the tasks to be computed, computation can be significantly acceler-
ated [10].

CPU GPU FPGA
Key:    █ Memory/IO        █ Cache        █ Control        █ Computation

Figure 3. Comparison of CPU, GPU and FPGA architectures, illustrated as schematic diagrams. GPUs
typically contain a greater proportion of computational resources than CPUs, with these resources sub-
divided within each multiprocessor to provide better parallel computing performance. FPGAs take a
different approach, comprising many control blocks connected to memory/IO interface and to one an-
other via switches [10].

GPUs contain similar centralized resources to CPUs, but consist of many multiprocessors,
each containing a greater proportion of computational resources than an equivalent CPU core.
GPUs are thus well-suited to perform computationally intensive tasks in parallel, for exam-
ple in event reconstruction at LHCb, where tasks such as track reconstruction and particle
identification must be completed for every event [11].

FPGAs are structured very differently, with memory and IO interface connected to many
interlinked control blocks formed of simpler logic gate arrangements, often accompanied by
a small cache. FGPAs are thus unable to complete complex tasks, though provide significant
acceleration of simpler, highly parallelisable tasks. The programmable nature of FPGAs
allows for their configuration with ML algorithms for fast performance [12, 13].

4 Early stage researchers

12 ESRs form the core of the network, with the training and partnerships providing a scaffold
for the completion of their respective outcomes. Each ESR is enrolled as a doctoral student
at a partner university for 3 years, during which they complete secondments in HEP and in-
dustry, as illustrated in Figure 4. The university of enrolment is generally also the hosting
institution, where the majority of the doctoral study is completed (industry-centred ESR po-
sitions are enrolled at a university near to the respective industry partner). A secondment in



HEP is undertaken either at another partner university or a partner research institute. Each
ESR (with the exception of those in industry-centred positions) also undertakes a secondment
in industry, working on an RTA project relevant to their research with an industry partner.

ESR enrolled as doctoral student at partner university 
3 years (2022-2025)

Industry secondment with partners using RTA “in-the-field” 
Typically 3 - 4 months

HEP secondment with research institute/second partner university 
Typically ~6 months

HEP goals 
Results and tools for use in HEP 

Industry goals 
Software and expertise in industry

i.

ii.

iii.

iv. v.

Sep. 2022

Sep. 2025

Figure 4. Structure of a SMARTHEP ESR position. Each ESR is enrolled (i.), during which they will
undertake secondments with network partners in HEP (ii.) and industry (iii.). Through the combination
of primary and secondment work, each ESR will complete goals in HEP (iv.) and industry (v.), dis-
cussed in further detail in Section 5. Precise durations of the secondments vary between ESR positions.

To illustrate further the structure of a SMARTHEP ESR position, examples of academia-
and industry-centred positions are given below. Details of the positions are given alongside
their corresponding label in Figure 4.

Firstly, an example of an academia-centred position is the ESR based at the University of
Heidelberg (i.). Their primary focus is of real-time dark photon searches at LHCb (iv.), fur-
thered by collaboration with the University of Milano-Bicocca (ii.). An industry secondment
(iii.) with Verizon Connect is planned, applying ML expertise to the real-time processing of
vehicle data (v.).

An industry-centred position is well-typified by the ESR working at IBM, enrolled at Sor-
bonne University (i.). Their research applies real-time rule induction to fraud detection using
real-time rule induction at IBM (v.). An industry secondment (iii.) is not undertaken, since
the primary research is undertaken with an industry partner; however, an academic second-
ment (ii.) is planned with the CNRS research institute, applying similar pattern-recognition
techniques to the classification of HEP observations (iv).

5 Network outcomes

The network is defined around a set of concrete outcomes, guiding the progression of the
network and its participants. These intended outcomes are summarised briefly below.

The core outcomes of the network are a set of goals, completed on behalf of the network
partners by the network participants, in particular by the ESRs, who each contribute to at least
one whitepaper. These goals include experiment commissioning, HEP measurements and
industrial results. These goals are typically defined with respect to a specific ESR position,
e.g., the goal of “calibration of ALICE TPC for heavy-ion physics”.

Participants will write a series of three whitepapers reviewing the current RTA state-of-
the-art, expected to be submitted in late 2023. These whitepapers will place a particular
emphasis on the ongoing contributions of the network to their respective topics. The first
whitepaper reviews ML applications to HEP in RTA contexts and their corresponding best
practices. Such applications range from data-taking, e.g., particle identification algorithms
at ALICE, to offline analysis, e.g., anomaly detection for dijet resonance searches at AT-
LAS [14, 15]. The use of hybrid computing architectures by LHC experiments is reviewed



in the second whitepaper. Tasks such as selection and reconstruction were significantly ac-
celerated during Run 2 of the LHC (2015-2018). Run 3 deployments of hybrid architectures
capitalise on this progress, e.g., in the use of FPGAs in the ALICE Central Trigger System
and the use of GPUs in the CMS High Level Trigger farm [16, 17]. In the third whitepa-
per, TDAQ systems of LHC experiments are reviewed, with a focus upon best practices for
both TDAQ hardware and software. As such, this whitepaper reviews topics ranging from
upgrades to the ATLAS TDAQ system, to the Allen framework of the LHCb experiment
enabling software trigger operation at a 30 MHz readout rate [18, 19].

As a key network objective, participants are also encouraged to partake in a broad range
of training activities, with network resources dedicated to facilitating this. Such activities
include the attendance of external specialist industrial training sessions and academic schools,
in addition to internally organised workshops and schools (e.g., in Section 6).

The work of the ESRs will generate digital assets (e.g., software packages, data process-
ing tools), with many being applicable beyond narrow academic/industrial applications. The
network is therefore committed to making any such digital assets Findable, Accessible, Inter-
operable, and Reusable (FAIR) [20]. To implement these commitments, a project on GitHub
has been created to host such assets [21]. Other assets and resources will be made available
on the network website [22].

6 Network events

Network events provide participants with unique opportunities to meet, exchange ideas
and develop. Whilst these events typically cater to the ESR audience, some events have
been made available to additional interested early career researchers working/studying at
SMARTHEP institutes.

To commence ESR participation in the network, a kick-off meeting was held at the Uni-
versity of Manchester in November 2022 to formally introduce the ESRs to the network and
discuss network objectives and organisation. Amongst the activities of the kick-off meeting
were a visit to the Jodrell Bank Centre for Astrophysics and a review paper-writing course by
Scriptoria to train ESRs ahead of writing the whitepapers.

In January of 2023, the First SMARTHEP School on Collider Physics and Machine
Learning was hosted by the University of Geneva. The school provided a varied programme,
including lectures on experimental physics at collider experiments by Anna Sfyrla and on
theoretical physics & Monte Carlo event generators by Torbjörn Sjöstrand. Additionally,
hands-on lessons in machine learning were led by Maurizio Pierini, with seminars also given
on multimessenger astronomy and the CERN experimental programme by Teresa Montaruli
and Jamie Boyd respectively.

Later events of the network aim to guide the governance of the network, develop ESR
expertise and deepen collaborations between participants. The network assembly serves as
an annual forum in which to make significant decisions on network policy and governance.
Technical hackathons, foreseen for autumn 2023, give ESRs the opportunity to learn state-
of-the-art techniques through their direct application. Hackathons also act as effective team-
building activities, promoting problem-solving, rapid prototyping and project management
skills, which ESRs can then apply to their own research projects. Accelerator and ML boot-
camps, proposed for summer 2024, will formalise the practical experience of ESRs. Collab-
oration with industry will culminate in an industry applications school late in the network, by
which time it is expected that all ESR industry secondments will have been completed.



7 Conclusion

Through the activities of the network outlined in this contribution, SMARTHEP aims to pro-
vide valuable contributions to HEP, industry, and the wider community. By the close of the
network in September 2025, the 12 ESRs will be well-equipped to progress their research and
their careers. The network will play a key role in the commissioning and operation of major
LHC experiments and seek to strengthen experimental RTA portfolios by a two-way sharing
of knowledge and expertise with industry partners. Such collaboration between academic
and industrial network participants will deepen synergies across the field in the application
of RTA.
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