Scalable training on scalable infrastructures for pro-
grammable hardware

Marco Lorusso'**, Daniele Bonacorsi'?2, Riccardo Travagliniz, Davide Salomoni®*, Paolo
VeronesiZ2, Diego Michelotto*, Mirko Mariotti?>, Giulio Bianchini??, Alessandro Costantini?,
and Doina Cristina Duma*

'Department of Physics and Astronomy "Augusto Righi", Alma Mater Studiorum - University of
Bologna, Viale Berti-Pichat 6/2, Bologna, Italy

2INFN - National Institute for Nuclear Physics, Viale Berti-Pichat 6/2, Bologna, Italy

3Department of Physics and Geology, Alma Mater Studiorum - University of Perugia, Via Alessandro
Pascoli, Perugia, Italy

4INFN - CNAF Bologna, Viale Berti-Pichat 6/2, Bologna, Italy

Abstract. Machine learning (ML) and deep learning (DL) techniques are in-
creasingly influential in High Energy Physics, necessitating effective comput-
ing infrastructures and training opportunities for users and developers, partic-
ularly concerning programmable hardware like FPGAs. A gap exists in ac-
cessible ML/DL on FPGA tutorials catering to diverse hardware specifications.
To bridge this gap, collaborative efforts by INFN-Bologna, the University of
Bologna, and INFN-CNAF produced a pilot course using virtual machines, in-
house cloud platforms, and AWS instances, utilizing Docker containers for in-
teractive exercises. Additionally, the Bond Machine software ecosystem, capa-
ble of generating FPGA-synthesizable computer architectures, is explored as a
simplified approach for teaching FPGA programming.

1 Status of Machine Learning education

Machine Learning has gained significant prominence in recent years within the field of com-
puter science. This is evident through the proliferation of educational initiatives, workshops,
and courses aimed at enhancing skills in this domain. In 2020, the AI Index [1]], an indepen-
dent effort associated with the Stanford Institute for Human-Centered Artificial Intelligence
(HAI), conducted a survey targeting top-ranked universities across the globe. This survey
focused on four key aspects of Al education: undergraduate and graduate program offerings,
education in Al ethics, and faculty diversity and expertise. The survey received responses
from 18 universities spanning 9 countries. The results of the survey indicate a noteworthy
increase in the quantity of AI courses offered, concentrating on the practical development
and deployment of Al models, as well as an uptick in Al-specialized faculty. The survey also
delved into advanced-level courses, specifically those intended for graduate students seeking
to acquire the necessary skills for constructing and implementing practical AI models. Over
the course of the last four academic years, these offerings saw a substantial 41.7% surge,
rising from 151 courses in the 201617 academic year to 214 in the 2019-20 academic year.

*e-mail: marco.lorussol1@unibo.it

In response to the escalating demand for Al courses and degree programs, there was a sig-
nificant rise in the number of tenure-track faculty members with a primary research emphasis
on Al at the surveyed universities. The count of Al-focused faculty increased by 59.1%, ex-
panding from 105 individuals in the 2016-17 academic year to 167 in the 2019-20 academic
year. The European Commission’s Joint Research Center (JRC) evaluated advanced digital
skills education across 27 European Union member states and an additional six countries:
the United Kingdom, Norway, Switzerland, Canada, the United States, and Australia. The
Commission counted a total of 1,680 specialized Al programs across all considered coun-
tries during the 2019-20 academic year. Notably, the United States boasted a higher count
of specialized Al programs compared to other regions, although the EU closely followed,
particularly in terms of Al-specialized master’s programs.

2 The course: Machine learning techniques with FPGA devices for
particle physics experiments

The introduction of field-programmable gate arrays (FPGAs) has significantly transformed
the landscape of digital logic design and deployment [2]. By blending the performance at-
tributes of application-specific integrated circuits (ASICs) with the adaptability of micropro-
cessors, FPGAs have enabled novel applications and even replaced ASICs and digital signal
processors (DSPs) in some conventional roles. However, harnessing the potential of FPGAs
requires a comprehensive grasp of both hardware and software considerations. This entails
not only accounting for the hardware components required for computations but also incor-
porating the software workflow that facilitates the design process. Although FPGAs offer the
advantages of software flexibility and hardware efficiency, achieving optimal results demands
a more intricate programming approach compared to microprocessors, despite FPGAs’ su-
perior speed and energy efficiency. Effectively leveraging FPGAs necessitates a foundational
comprehension of both software and hardware principles. This includes, as depicted in Figure
[T] familiarity with digital logic design, hardware description languages like Verilog or VHDL,
as well as basic computer programming knowledge encompassing data structures and algo-
rithms. An ideal user profile would integrate expertise in electrical engineering, computer
science, and computer engineering. Condensing such a vast array of concepts within a single
course or workshop presents a significant challenge.

In Section [I] the abundance of new courses focused on Machine Learning and Artificial
Intelligence is evident, yet the same is not observed when considering the integration of Al
and FPGAs. Despite the potential benefits of combining these advanced technologies, such
as reduced latency and energy consumption, particularly in fields like High Energy Physics
[3]], there have been limited endeavors to educate individuals in this intersection.

. . . + Background of electronics
e iaonlevelprooranning « Hardware Descriptive
« Knowledge of libraries like N \ [(HDLl)j lillﬂms \
TensorFlow and Pytorch Sl
. g » Lower level software PHlME Vi
+ Data Science SR L

Figure 1. Different set of skills needed to be proficient in both the world of Al and FPGAs.

From the gap in tutorials on ML on FPGAs, the idea of a course called Machine learning
techniques with FPGA devices for particle physics experiments [4] came up, in order to give a
start in understanding and experimenting the various tools that allow the connection between
the world of Al and FPGAs.

The course took place from 2" to 4" November 2022 and it was organized by the Bologna
division of the Italian National institute for Nuclear Physics (INFN) with the technical support
of CNAF, the main data processing and computing technology research center of INFN. This
effort was funded by the INFN Training program. It represented a first step towards a greater
focus on education in this field in Italy. The course featured leading international lecturers
who are involved in the development of tools to make hardware more approachable at a higher
level. The program also received support from the AMD/Xilinx University Program (XUP).

A lot of topics were addressed in the dense two days of lectures and more than half of the
duration of the course was spent on tutorials:

¢ Introduction to efficient use of Machine Learning in HEP;
e Crash course on what FPGAs are;

e HLS4ML and how to translate Python to something implementable in hardware (see Section
2.1

o Vitis-Al, the AMD/Xilinx solution to Artifical Intelligence on programmable hardware;

e A new kind of computer architecture (multi-core and heterogeneous) which dynamically
adapts to the specific computational problem rather than being static: the BondMachine

(see Section
e How Quartus and Intel make ML on FPGA possible;

In the next two Sections a small description of hls4ml and the BondMachine is given, as they
were two topics of major interest for the high-energy physics community.

2.1 HLS4ML

High-level Synthesis (HLS) [5] is the process of automatic generation of hardware circuit
from “behavioral descriptions” contained in a C or C++ program. HLS acts as a bridge
between hardware and software domains [6], providing an improvement in productivity for
hardware designers who can work at a higher level of abstraction while creating high per-
formance hardware as well as an improvement in system performance for software designers
who can accelerate the computationally intensive parts of their algorithms on a new compila-
tion target, i.e. the FPGA.

Using HLS design methodology allows to develop algorithms at the C-level typically
associated to a shorter development time. Moreover, it is easier to validate functional correct-
ness at this level than with traditional HDLs.

The hls4ml package [3} 7] was developed by members of the High Energy Physics (HEP)
community to translate ML algorithms, built using frameworks like TensorFlow, into HLS
code. In this way a trained Neural Network (NN), defined by its architecture, weights, and
biases, can be made ready for hardware synthesis with few lines of code. A schematic of a
typical workflow is illustrated in Figure [2]

The part of the workflow illustrated in red indicates the usual software workflow required
to design a NN for a specific task. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to
run on an FPGA. Some code snippets are shown in the following to explain how an already
trained model can be converted into an HLS project using the hls4ml Python API.

Firstly, the model must be loaded:

import hls4ml

| import tensorflow as tf
il model = tf.keras.model.load ("model.h5")

Then, a con figuration has to be created:

config = hls4ml.utils.config_from_keras_model (model, granularity = ‘name’)

The config_from_keras_model () function returns a Python dictionary and takes the fol-
lowing compulsory arguments:

e The Python object containing the NN;

e The granularity (name, type or model) determines the desired level of detail for parame-
ter tuning. Opting for name enables the configuration of each layer and activation function
independently. Conversely, texttttype is employed when a shared configuration is desired
for all layers of the same type. Lastly, model involves utilizing a single configuration for
the entire model.

By modifying the configuration dictionary it is possible to change the arithmetic precision
used for weights, biases and results. After the configuration, the model can be converted by

Keras
TensorFlow
PyTorch

%, Co-processing kernel
- v his 4 ml

compressed

model HLS s
conversion

Custom firmware
design

Usual machine learning
software workflow

tune configuration
precision
reuse/pipeline

Figure 2. A typical workflow to translate a model into an FPGA implementation using hls4ml.

specifying, other than the model object and configuration, the output folder and the FPGA
model where the project will be implemented:

hls_model = hls4ml.converters.convert_from_keras_model (model, hls_config=
config, output_dir="HLS_Project’, fpga_part="xczu9eg—ffvbl1156-2-¢")

Now, typing hls_model.compile(), the hls_model can be compiled, i.e. scripts for Vi-
vado HLS [6] are generated containing the instructions for synthesizing the model with the
provided device as target hardware. It is possible to synthesize the project inside a Python
session with the hls_model.build() function.

It is clear from the couple of lines of code shown, how easy it is to create the HLS project,
making it feasible also for people who are not experts in FPGAs or hardware. Indeed, the
goal of the hls4ml package is to empower a HEP physicist to accelerate ML algorithms using
FPGAs, thanks to its tools for ML models conversion into HLS. Indeed, hls4ml makes the
translation of Python objects into HLS, and its synthesis, parts of an automatic workflow,
allowing fast deployment times also for those who know how to write software, yet are not
experts on FPGAs.

2.2 The BondMachine

BondMachine (BM) [8] is an open-source framework that enables the creation of computa-
tional systems with co-designed hardware and software. This approach maximizes the use of

existing resources in terms of concurrency and heterogeneity. The unique feature of BM is
the creation of a dynamic architecture that adapts to the specific problem, rather than being
static. The hardware is customized to meet the software requirements, implementing only the
necessary processing units, resulting in significant advantages in terms of energy consump-
tion and performance. Furthermore, BM is vendor and board independent, allowing for the
creation of clusters of heterogeneous FPGAs.

Compared to the use of Hardware Description Language (HDL) code, BM introduces
an architecture abstraction layer with minimal overhead, allowing for the use of a standard
computational model. This toolkit makes full use of the main features of Field Programmable
Gate Arrays (FPGAs) and can be used as an High-Level tool to generate custom firmware for
accelerated computation.

Inputs

Processor 0 \

PO sharedmem PO channel PO barrier PO\inputs

>

Processor 1 \ Processor 2 ‘\\\
Pl sharsdmen | [L channel . i Pl inputs P2 channsl - ¥2 barrier | | p2\inputs

harpdmem anne parrier

Figure 3. An example of a BondMachine architecture. This specific BM is made of two inputs and
three outputs interconnected between the input/output registers of the processors. Shared objects, such
as memory, Channel and Barrier, are connected among the processors.

The BM architecture is particularly suitable for computational models and graphs. The
project’s flagship activity involves generating firmware with the aim of developing acceler-
ated systems on FPGA to solve different computational problems with a particular focus on
machine learning inference [9]. The firmware for accelerated inference generated starting
from an high-level trained model with standard machine learning libraries, is highly cus-
tomizable according to the needs of the specific problem. Different hardware and software
optimization techniques have been implemented, starting from the choice of the numerical
precision, up to the collapse and pruning of the processors, in order to reduce the resource
usage and the energy consumption while improving the inference speed at the same time.

3 A scalable classroom using Cloud Computing

The course aimed to provide an avenue for participants to gain hands-on experience with
FPGA technology and the workflows that will be used to create a functional ML design.
However, the development of ML algorithms and FPGA firmware requires specific software
and libraries, which means a dedicated development machine must be available to attendees.
On the other hand, despite the desire to use actual hardware to test the firmware, it is typically
not possible for multiple individuals to access FPGAs simultaneously for programming. At
the same time it is evident that providing a board for each attendee would be cost-prohibitive
and impractical. As a result, the solution was to utilize FPGAs in the cloud.

)
Develop ¢ Deploy F1

LLAAA -

« VMs hosted on the INFN Cloud
infrastructure;

« Python environment with ML » VMs hosted by Amazon Web
libraries to develop Neural Services;

Networks; = All set-up with drivers and

« Command line interface with libraries to program the
Jupyter notebooks support; included FPGA;

« HLS4ML and Vivado Design « Vitis-Al Docker container;
Suite to produce FPGA » Available during the workshop
firmware; and after if requested.

« Available during and after the
workshop.

J J

Figure 4. Layout of the two virtual machines made available to each attendee of the course.

A system with two different machines was set up (Figure[d): a Development machine and
a Deployment machine.

The Development machines consist in CentOS 7 Virtual Machines (VM) created in the
INFEN Cloud infrastructure. By utilizing Anacondeﬂ a Python environment was made acces-
sible which contained all the necessary tools to manipulate data and construct Neural Net-
works such as TensorFlow, Keras, QKeraﬂ for quantization and optimization, and HLS4ML.
To access the machines, SSH with X11 support has been used. The Vivado Design Suite
was installed to enable the creation of FPGA firmware, equipped with the relevant libraries
to target the available board in the deployment machine. To guarantee remote access to the
machines, a public floating IP (FIP) address has been assigned to each VM. In order to let the
users play with the available resources and services after the working period of the workshop,
they were maintained for a few weeks after the workshop ended.

The Deployment machines deployed on AWS are EC2 F1 instances [10], equipped with
Xilinx FPGA acceleration cards. F1 instances are equipped with tools to develop, simulate,
debug, and compile a hardware acceleration code, including an FPGA Developer Amazon
Machine Image (AMI) and supporting hardware level development on the cloud. In order to
test the Vitis-Al toolkiﬂ the Docker Daemon was added to the AMI.

Using F1 instances to deploy hardware accelerations can be useful in many applications
to solve complex science, engineering, and business problems that require high bandwidth,
enhanced networking, and very high compute capabilities. A variety of target applications can
benefit from F1 instance acceleration, including but not limited to genomics, search/analytics,
image and video processing, network security, electronic design automation (EDA), image
and file compression, and big data analytics.

1 https://www.anaconda.com
Zhttps://github.com/google/qkeras
3 https://www.xilinx.com/products/design-tools/vitis/vitis-ai

https://www.anaconda.com
https://github.com/google/qkeras
https://www.xilinx.com/products/design-tools/vitis/vitis-ai

F1 instances provide diverse development environments: from low-level hardware devel-
opers to software developers who are more comfortable with C/C++ and OpenCL environ-
ments. Once an FPGA design is complete, it can be registered as an Amazon FPGA Image
(AFI), and deployed to every F1 instance needed.

The course has been used as a test to exploit the potential benefits of a seamless integra-
tion between INFN Cloud and a cloud provider like AWS. The proposed sketch of how this
integration could work are listed hereafter:

e The users would authenticate themselves on the INFN Cloud using a federated authentica-
tion system;

e They would then select the type of resource they need, even FPGAs from various vendors;

e If the desired FPGA resource is not available on INFN Cloud, it could be instantiated on
AWS transparently;

e The user would be provided with an endpoint to connect to, without the need for a different
authentication or interface.

4 Expanding INFN Cloud Services with HPC Bubbles

This proof of concept is part of the effort by the people behind INFN Cloud to continuously
expand the services that they can offer and keep up with the ever-growing interest in hetero-
geneous computing.

Indeed, INFN spearheaded the Terabit network for Research and Academic Big data
in Italy (TeRABIT) initiative, which is backed by the Italian National Recovery and Re-
silience Plan (NRRP) [[11]]. The project’s objective revolves around establishing a distributed,
highly interconnected hybrid Cloud-HPC computing environment. This entails the integra-
tion of the distributed INFN infrastructure with PRACE-Italy’s HPC resources, facilitated
by a high-speed network provided by the National computer network for universities and
research (GARR)

Within this framework, INFN is expanding its INFN Cloud infrastructure by deploying
distributed HPC infrastructures known as "HPC Bubbles" These HPC Bubbles encompass
various clusters featuring CPUs, CPUs + GPUs, and CPUs + FPGAs, along with swift storage
capabilities. The plan encompasses achieving integration both among the distributed HPC
bubbles themselves and between these bubbles and the INFN Cloud infrastructure. Moreover,
integration is sought between the HPC bubbles and conventional HPC systems, with a notable
focus on the Leonardo @ CINECA system.

The overarching aim is to establish a scalable "Edge-Cloud Continuum" that leverages Al
technologies. This continuum is designed to empower users to flexibly process substantial
volumes of big data, offering a dynamic and adaptable approach to data processing.

5 Conclusions

In conclusion, machine learning and deep learning techniques are becoming increasingly im-
portant in High Energy Physics, which presents several challenges. To effectively implement
Al workflows, there is a need for computing infrastructures, as well as training opportunities
to upskill users and developers in using programmable hardware like FPGAs. While there
are many training opportunities available, there is a gap in hands-on tutorials for ML/DL on
FPGAs that can cater to a large number of attendees and provide access to a diverse set of
hardware with varying specifications. To bridge this gap, INFN-Bologna, the University of

Bologna, and INFN-CNAF collaborated on a pilot course on ML/DL on FPGAs using virtual
machines, in-house cloud platforms, and Amazon AWS instances.

While the course was successful and garnered significant interest, there is still room for
improvement. For example, attendees could benefit from more tutorial time and access to the
machines before the training begins to better prepare. The lack of established teaching meth-
ods for this topic presents an opportunity to test new and more effective teaching techniques,
such as inverted learning.

Finally, creating a VM template that includes all the necessary tools for this type of de-
velopment and publishing an AMI for deployment could streamline the setup process and
increase productivity for both educational purposes and research work.

Acknowledgments

We would like to express our gratitude to Dr. Thea Aarrestad (ETH), Dr. Vladimir Loncar
(CERN), Dr. Jennifer Ngadiuba (CALTECH), and Dr. Sioni Summers (CERN) for their
invaluable support and constructive feedback. Additionally, we would like to acknowledge
the financial support provided by the INFN Training Commission and the technical assistance
offered by the AMD/Xilinx University Program. Furthermore, we extend our appreciation to
Mariella Gangi and Antonella Monducci for their organizational support.

References

[1] D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli, B. Grosz, T. Lyons,
J. Manyika, J.C. Niebles, M. Sellitto et al., The Al Index 2021 Annual Report (Al Index
Steering Committee, Human-Centered Al Institute, Stanford University, 2021)

[2] S. Hauck, A. DeHon, Reconfigurable computing: the theory and practice of
FPGA-based computation, Systems on Silicon (Morgan Kaufmann, 2008), ISBN
9780123705228

[3] J. Duarte et al., JINST 13, P07027 (2018), 1804.06913

[4] Machine learning techniques with fpga devices for particle physics experiments https:
/agenda.infn.it/event/ 15116/

[5] P. Coussy, A. Morawiec, High-Level Synthesis: From Algorithm to Digital Circuits

(2008)

6] Vivado Design Suite User Guide - High-Level Synthesis, Xilinx Inc. (2020)

7] FastML Team, hls4ml, https://doi.org/10.5281/zenodo.7933047

8] M. Mariotti, D. Magalotti, D. Spiga, L. Storchi, Parallel Computing 109, 102873 (2022)

9] M. Mariotti, L. Storchi, D. Spiga, D. Salomoni, T. Boccali, D. Bonacorsi, The BondMa-

chine toolkit: Enabling Machine Learning on FPGA, in International Symposium on
Grids & Clouds 2019 (2019), p. 20
[10] M. Lorusso, D. Bonacorsi, D. Salomoni, R. Travaglini, PoS ISGC2022, 001 (2022)
[11] F. Fanzago, INFN and the evolution of distributed scientific computing in Italy https:
//indico. jlab.org/event/459/contributions/ 11802/ (CHEP, 2023)

[
[
[
[

https://agenda.infn.it/event/15116/
https://agenda.infn.it/event/15116/
https://doi.org/10.5281/zenodo.7933047
https://indico.jlab.org/event/459/contributions/11802/
https://indico.jlab.org/event/459/contributions/11802/

	Status of Machine Learning education
	The course: Machine learning techniques with FPGA devices for particle physics experiments
	HLS4ML
	The BondMachine

	A scalable classroom using Cloud Computing
	Expanding INFN Cloud Services with HPC Bubbles
	Conclusions

