
Machine Learning for Columnar High Energy Physics
Analysis

Elliott Kauffman1,∗, Alexander Held2,, and Oksana Shadura3,

1Princeton University
2University of Wisconsin-Madison
3University of Nebraska-Lincoln

Abstract. Machine learning (ML) has become an integral component of high
energy physics data analyses and is likely to continue to grow in prevalence.
Physicists are incorporating ML into many aspects of analysis, from using
boosted decision trees to classify particle jets to using unsupervised learning
to search for physics beyond the Standard Model. Since ML methods have
become so widespread in analysis and these analyses need to be scaled up for
HL-LHC data, neatly integrating ML training and inference into scalable anal-
ysis workflows will improve the user experience of analysis in the HL-LHC era.

We present the integration of ML training and inference into the IRIS-
HEP Analysis Grand Challenge pipeline to provide an example of how this
integration can look like in a realistic analysis environment. We also utilize
Open Data to ensure the project’s reach to the broader community. Different
approaches for performing ML inference at analysis facilities are investigated
and compared, including performing inference through external servers.
Since ML techniques are applied for many different types of tasks in physics
analyses, we showcase options for ML integration that can be applied to
various inference needs.

1 Introduction

Machine learning has increased in prevalence across many areas in high energy physics, a
trend which is likely to continue through the high luminosity era of the LHC (HL-LHC).
The large integrated luminosity increase initiated by this upgrade will introduce much higher
data volume and event size. Machine learning is well-positioned to help with many of the
resulting challenges [1]. Analysis in high energy physics is one area where machine learning
promises to assist, including tasks such as event classification, jet tagging, and unsupervised
anomaly detection.

Traditionally, high energy physicists have depended on compiled languages such as
C++ due to the need for fast processing speed and efficient memory usage. Analyses
have been typically structured in "event-loop" format, in which event-level quantities are
calculated and handled in a for-loop over events. An alternative to this approach is "columnar

∗e-mail: ek8842@princeton.edu



analysis". In practice, there are many different definitions of this term, but for the purpose
of the following discussion, columnar analysis refers to array programming methods and
user interfaces that focus on handling arrays-at-a-time instead of users needing to handle
each event separately. This allows one to avoid writing explicit for-loops and exploit parallel
computations. Many users find the structure of columnar analysis pipelines more readable
and enjoy the level of interactivity experienced when developing analysis. These features
combine to offer a faster time-to-insight for physicists performing analysis [2] [3].

Columnar analyses are also popular in other fields, allowing HEP columnar analyses
to utilize well-maintained tools that are broadly used outside of HEP. This may be es-
pecially useful when it comes to machine learning, since Python offers an extensive and
well-maintained collection of machine learning tools. We present a columnar high energy
physics analysis pipeline with integrated machine learning inference in the context of the
IRIS-HEP Analysis Grand Challenge.

2 The Analysis Grand Challenge

The Institute for Research and Innovation in Software for High Energy Physics (IRIS-
HEP) [4] develops software and software infrastructure in anticipation of the HL-LHC.
The Analysis Grand Challenge [5] integrates the different components of the IRIS-HEP
ecosystem into realistic HEP analysis workflows involving HL-LHC-scale data. The project
can serve multiple purposes, including testing the integration of various tools, serving as
a test for different tools and analysis facilities, and introducing users to columnar HEP
analysis. At the time of this paper, the most developed analysis workflow under the AGC
umbrella is a tt̄ cross-section measurement using CMS 2015 Open Data [6]. This particular
task was chosen so that all typical analysis workflow aspects can be reflected. The files used
for this task, consisting of a total of 1 billion events (around 1.8 TB), are pre-converted into
NanoAOD format[7].

The IRIS-HEP implementation of the Analysis Grand Challenge and information for
using the relevant input data is located on GitHub [8]. More information about the Analysis
Grand Challenge can be found on the dedicated Read the Docs [9].

2.1 CMS Open Data Task Description

The IRIS-HEP implementation of the task can be ran fully within Jupyter notebooks,
allowing the user to develop their analysis in an interactive manner. Before the introduction
of the machine learning component, the tt̄ cross-section measurement task can be broken
down into the following steps. First, the appropriate data are accessed and events are selected
based on cuts to enhance the purity of tt̄ in the signal region. At the same time, some
object and event-level variations are applied in order to evaluate systematic uncertainties.
The tools used to handle this step in this implementation are uproot [10], coffea [11],
and awkward [12]. There is an optional step to pre-select relevant columns and save these
in cached files using ServiceX [13]. Next, the relevant observables are calculated and
filled into histograms using hist [14]. These histograms are saved to ROOT [15] files.
The histograms are then used to build statistical models and create a workspace. A fit is
performed using pseudodata generated from simulated data to measure the value of the tt̄
cross-section. The tools used for this step are pyhf [16] [17] and cabinetry [18].



2.2 Machine Learning Task

The goal of the machine learning task implemented in this first iteration is to use a simple
model as a proof of principle. One of the observables calculated in the existing tt̄ pipeline is
a reconstructed mass of the top quark. The signal used for this search contains four jets and
one lepton: one top quark decays to a jet and a charged lepton plus a neutrino while the other
decays to three jets.

The three jets with the highest combined transverse momentum (pT ) correlate highly

Figure 1. Feynman diagram representing the tt̄ signal used for the cross-section measurement (4 jets
and a charged lepton plus a neutrino)

with the three jets on the side of hadronic decay, so the combined mass of these three jets
should approximate the mass of the top quark. With an approach based on a boosted decision
tree (BDT), this reconstruction can be more accurate. In addition to the increased accuracy
of this observable, this jet-labelling unlocks access to other observables. For instance, if one
knows with good certainty which two jets originate from the W boson, one can estimate the
W mass. One could also estimate the angles between the different jets using their predicted
labels.

The labeling scheme is as follows: the two jets originating from the decay products of
the W boson are considered indistinguishable and labeled as W. The jet originating from the
b quark on the side of leptonic decay is called btop-had. The jet originating from the b quark
on the side of hadronic decay is called btop-lep. The BDT considers each permutation of jet
assignments within an event as an input. The permutation with the highest BDT score is
selected and the jets are labeled according to that permutation. One example of a simulated
event containing the required labels is shown in Fig. 2.



Figure 2. An example of a four-jet tt̄ event in η-ϕ space with two b-tagged jets outlined in black.
Truth particles are also displayed with parentage indicated by dashed grey lines. Jets are ordered by
decreasing transverse momentum.

3 Training Component

The machine learning task is implemented within the tt̄ cross-section measurement task
using a pre-trained model so that only machine learning inference is required. A separate
pipeline is used to produce the trained model. First, simulated data is loaded from ROOT
files using uproot. Each event is filtered to ensure that it fits the signal region (requiring
4 jets and 2 b-tagged jets). The events are further filtered using the truth information of
particles which are matched to jets using a standard ∆R method1. Events that contain exactly
two W-labeled jets, one btop-had-labeled jet, and one btop-lep-labeled jet are selected from this
sample. For the training dataset it is necessary that perfect jet-parton assignment is possible.
Since not many events are required to produce a reasonable trained model, restricting to four
jets per event is convenient to improve computational efficiency. For the four jet case, there
are 12 different permutations of jet-label associations to consider.

For each possible permutation, 20 features are calculated. These features include ob-
servables such as the ∆R between the btop-lep jet and the lepton and the transverse
momentum of each jet. If N is the number of events used for training, the input training
dataset has dimensions (12 × N, 20). These columns of training features are calculated

1∆R is defined as ∆R =
√

(∆η)2 + (∆ϕ)2, where η is the pseudorapidity and ϕ is the azimuthal angle.



in a coffea processor which utilizes dask [19] to process multiple chunks of data in parallel.

Many machine learning applications in HEP analysis use hyperparameter optimization
to identify the best set of hyperparameters to maximize the performance metric of interest.
For this demonstration, a random search hyperparameter optimization approach is adopted.
A chosen number of test hyperparameter values are randomly selected from a preset
parameter space. A BDT model is then created using each set of hyperparameters. In this
case, since each trial is independent of the previous trial, each model can be trained in
parallel. This is achieved again using dask. mlflow [20] is used here as a tracking tool
to store different performance metrics for each trial, including the accuracy, precision, and
training time. In addition, mlflow can also be used to store the trained models so that local
memory can be saved. This is particularly useful for more complex models.

Once the best model is selected from all trials, the best model is saved into Amazon
s3 storage and from there is connected to the NVIDIA Triton [21] inference server.
A configuration file specifying the model name, attributes, and inference preferences is
included alongside the models to inform Triton how to load and use the model.

4 Inference Component

The inference component of the machine learning task utilizes NVIDIA Triton to perform
inference as a service. In order to perform inference, the user first initializes a Triton gRPC
client to communicate with the inference server. Once the input features are calculated
(using the same steps as in the training component except using no truth information), the
user specifies the model, sends the columns of features to the inference server, then receives
the inference results. This demonstration is intended as a functionality demonstration so
that the user can observe how a model can be used with Triton. The model in this case is
relatively simple, and thus we did not observe a significant run-time difference.

After the inference results are obtained, the permutations with the highest score are
selected. The combined mass trijet combination in each event with the highest pT is used
as the signal observable, which uses no information from the machine learning component.
This observable is an approximation of the top mass. The signal observable is used to fit the
model to the data. The fit results can then be applied to the machine learning observables to
assess goodness of fit. An example comparing the pre-fit and post-fit distributions of one of
the ML observables is seen in Figure 3.

5 Conclusions and Outlook

Columnar analysis is an important tool for HEP scientists who want to conduct their analysis
in Python. Since ML is an important component of many recent HEP analysis, it is useful
to show how ML inference can be integrated into a columnar analysis framework. This
initial integration of a machine learning component into the Analysis Grand Challenge
framework demonstrates one way of using ML in columnar analysis. Different tools can be
used to facilitate the integration of ML at different steps along the process. There are many
options available to users, only some of which have been explored so far in the context of the
Analysis Grand Challenge.

For the training step, distributing different hyperparameter optimization trials using



Figure 3. The fit results are applied to one of the ML observables (the ML version of the reconstructed
top mass). The data-model ratios in the post-fit distribution are all consistent with 1, indicating that the
fit works well.

dask is used to speed up the training process. Since we have been working with a simple
model thus far, all training is conducted using the local CPU resources. mlflow is used to
track and store models outside of the local Jupyter notebook kernel. For inference, NVIDIA
Triton is used to perform "inference as a service", which ships columns of input features to
perform inference on GPUs and return the column of results.

Future studies will involve benchmarking measurements of the inference component
in order to identify potential bottlenecks and identify where improvement is necessary.
In order to observe the improvements offered by the utilization of the NVIDIA Triton
inference server, a more complex model will be developed and used. Once a more complex
model is adopted, it will likely be necessary to adapt the approach of training the model to
include training on a GPU.

Acknowledgements

This work was supported by the U.S. National Science Foundation (NSF) Cooperative
Agreement OAC-1836650 (IRIS-HEP).

The Analysis Grand Challenge is made possible thanks to the help of a large number
of people working on many different projects. Thank you in particular to the teams behind:
coffea-casa, Scikit-HEP, coffea, IRIS-HEP Analysis Systems, ServiceX, IRIS-HEP DOMA,
IRIS-HEP SSL, and the CMS Data Preservation and Open Access (DPOA) group.

References

[1] Albertsson, Kim et al., Machine Learning in High Energy Physics Community White
Paper (2019), https://doi.org/10.48550/arXiv.1807.02876

https://doi.org/10.48550/arXiv.1807.02876


[2] J. Pivarski, P. Elmer, D. Lange, EPJ Web Conf. 245, 05023 (2020)
[3] N. Smith, L. Gray, M. Cremonesi, B. Jayatilaka, O. Gutsche, A. Hall, K. Pedro,

M. Acosta, A. Melo, S. Belforte et al., EPJ Web Conf. 245, 06012 (2020)
[4] IRIS-HEP, Institute for Research and Innovation in Software for High Energy Physics

(IRIS-HEP), https://iris-hep.org/
[5] A. Held, O. Shadura, PoS 235 (2022)
[6] CMS Data preservation and open access group, Getting Started with CMS 2015 Open

Data, https://opendata.cern.ch/docs/cms-getting-started-2015 (2022)
[7] A. Rizzi, G. Petrucciani, M. Peruzzi (CMS), EPJ Web Conf. 214, 06021 (2019)
[8] A. Held, E. Kauffman, O. Shadura, E. Guiraud, M. Feickert, J. Chakraborty, M. Proffitt,

A. Wightman, K. Choi, E. Chavez et al., Analysis Grand Challenge, https://doi.
org/10.5281/zenodo.7274936

[9] E. Kauffman, A. Held, O. Shadura, Analysis Grand Challenge ReadTheDocs,
https://agc.readthedocs.io/en/latest/

[10] J. Pivarski, H. Schreiner, A. Hollands, P. Das, K. Kothari, A. Roy, J. Ling, N. Smith,
C. Burr, G. Stark, Uproot (Accessed 29-11-2023), https://doi.org/10.5281/
zenodo.4340632

[11] L. Gray, N. Smith, B. Tovar, A. Novak, J. Chakraborty, P. Fackeldey, N. Hartmann,
G. Watts, D. Thain, G. Stark et al., coffea (Accessed 29-11-2023), https://doi.org/
10.5281/zenodo.3266454

[12] J. Pivarski, I. Osborne, I. Ifrim, H. Schreiner, A. Hollands, A. Biswas, P. Das,
S. Roy Choudhury, N. Smith, M. Goyal, Awkward Array, https://doi.org/10.
5281/zenodo.4341376

[13] B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic,
G. Watts, M. Weinberg, EPJ Web Conf. 245, 04043 (2020)

[14] H. Schreiner, S. Liu, A. Goel, hist, https://doi.org/10.5281/zenodo.4057112
[15] R. Brun, F. Rademakers, ROOT (Accessed 29-11-2023), https://zenodo.org/

badge/latestdoi/10994345

[16] L. Heinrich, M. Feickert, G. Stark, pyhf (Accessed 29-11-2023), https://doi.org/
10.5281/zenodo.1169739

[17] L. Heinrich, M. Feickert, G. Stark, K. Cranmer, Journal of Open Source Software 6,
2823 (2021)

[18] A. Held, M. Feickert, H. Schreiner, L. Henkelmann, A. Hollands, N. Simpson, cabinetry
(Accessed 29-11-2023), https://doi.org/10.5281/zenodo.4742752

[19] Dask Development Team, Dask: Library for dynamic task scheduling, https://dask.org
(2016), (Accessed 29-11-2023)

[20] MLflow Project, a Series of LF Projects, LLC., mlflow (Accessed 29-11-2023), https:
//mlflow.org/

[21] NVIDIA Development Team, NVIDIA Triton Inference Server (Accessed 29-11-2023),
https://developer.nvidia.com/triton-inference-server

https://iris-hep.org/
https://opendata.cern.ch/docs/cms-getting-started-2015
https://doi.org/10.5281/zenodo.7274936
https://doi.org/10.5281/zenodo.7274936
https://agc.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.3266454
https://doi.org/10.5281/zenodo.3266454
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.5281/zenodo.4057112
https://zenodo.org/badge/latestdoi/10994345
https://zenodo.org/badge/latestdoi/10994345
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.5281/zenodo.4742752
https://dask.org
https://mlflow.org/
https://mlflow.org/
https://developer.nvidia.com/triton-inference-server

	Introduction
	The Analysis Grand Challenge
	CMS Open Data Task Description
	Machine Learning Task

	Training Component
	Inference Component
	Conclusions and Outlook

