
The ALICE Service Work system

Jomar Júnior de Souza Pereira1,∗, Adriana Telesca2,∗∗, Mario Günter Simão1,∗∗∗, Jose
Manuel Seixas1,∗∗∗∗, and Rodrigo Coura Torres1,†

1Signal Processing Lab, COPPE/Poli - Federal University of Rio de Janeiro, Brazil
2European Organization for Nuclear Research (CERN), Switzerland

Abstract. The "A Large Ion Collider Experiment" (ALICE), one of the four
large experiments at the European Organization for Nuclear Research (CERN),
is responsible for studying the physics of strongly interacting matter and the
quark-gluon plasma. In order to ensure the full success of ALICE operation
and data taking during the Large Hadron Collider Runs 3 and 4, a list of tasks
identified as Service Work is established and maintained. This concerns de-
tector maintenance, operation, calibration, quality control, data processing and
outreach, as well as coordination and managerial roles in ALICE. The ALICE
Glance Service Work system is a tool developed by a cooperation between the
ALICE Collaboration and several universities that serves as the link between
the user interaction and thousands of database entries. This paper describes the
development process of this system and its functionalities, which range from
planning the entire year of work for hundreds of tasks to individually assigning
these tasks to members of the collaboration.

1 Introduction

The ALICE [1] Collaboration at CERN has set up a list of tasks identified as Service Works
which regards duties related to detector maintenance, data processing, outreach and manage-
rial roles to ensure the success of the experiment for the Large Hadron Collider Run 3 [2],
which started on July 2022 and its future Run 4, expected to be starting in 2030.

Being one of the four large experiments of the laboratory, with over 360 service work
tasks assigned many-to-many to more than 2000 members, the newly established service
work board deemed it necessary for an automated tool to be employed to assist in managing
these numbers.

The Glance team [3] originated as a singular system developed only for the ATLAS ex-
periment [4] at CERN. The application was launched in 2003 and swiftly transformed itself
to extend its solutions to the ALICE and LHCb [5] experiments. Today, it is a diverse team of
more than 20 developers scattered around 4 different countries on 3 different continents. This
team now is responsible for the development of an extensive list of applications for three of
the large experiments at CERN.

∗e-mail: jomar.junior@cern.ch
∗∗e-mail: adriana.telesca@cern.ch
∗∗∗e-mail: mariosimao@poli.ufrj.br
∗∗∗∗e-mail: seixas@lps.ufrj.br
†e-mail: torres@lps.ufrj.br



The ALICE Service Work system is an app developed by the Glance Team that is re-
sponsible for providing an easy way for coordinators to manage and display such tasks and
assignments. It is aimed to allow a straightforward development, with simple implementa-
tions and minimum coupling.

By implementing the ALICE Service Work system, the collaboration aims to reduce time
spent on administrative tasks and allocate more resources to the experimental aspects of the
job.

2 Foundation

Developing applications for a collaboration of about 2000 members makes crucial the adher-
ence to best practices in order to ensure their effectiveness and success. Due to the characteris-
tics of the endeavor, the Domain-Driven Design (DDD) [6] tied to the Hexagonal architecture
[7] is the foundation of the ALICE Service Work system. With this approach we can achieve
modular and scalable architecture that promotes flexible and maintainable codebases. More-
over, it is imperative to prioritize user-centered design principles throughout the development
process to ensure the app’s full success and widespread acceptance within the collaboration.
In the subsequent subsections we will explain the principles of each methodology and explain
how their integration enhances the reliability of the ALICE Service Work system.

2.1 Domain-Driven Design

Figure 1: Bounded contexts in the Service Work system.

Domain-Driven Design (DDD) is a software development approach that emphasizes un-
derstanding the business domain and aligning the software design with it. It promotes the
use of a shared language, known as “ubiquitous language”, to bridge the gap between tech-
nical and business domains. As part of this implementation for the Service Work system,
we aim to divide its complex functionalities into smaller bounded contexts, with each hav-
ing its own classes and methods, as described in Figure 1. It also demonstrates a consistent
nomenclature for classes and methods, ensuring alignment with end users’ and stakehold-
ers’ perceptions. DDD benefits collaborations by aligning the software design with unique
business requirements and facilitating closer collaboration between the development team
and domain experts. While DDD requires domain expertise, its benefits include improved
software quality, reduced complexity and increased maintainability.



2.2 Hexagonal architecture

The Hexagonal architecture, also known as Ports and Adapters, is a software architectural
pattern that isolates the core business logic from external dependencies, as shown in Fig-
ure 2. It divides the application into three layers: core application, ports and adapters. The
core application layer contains the domain model and business logic, while the ports layer
defines interfaces for interacting with external systems. The adapters layer implements these
interfaces, adapting the external systems to work with the core application. The Hexagonal
architecture provides benefits such as flexibility, maintainability and testability by enabling
easy replacement of external systems, promoting modular code and facilitating isolated test-
ing of the core logic.

Figure 2: The hexagonal structure.

2.3 User-Centered Design

User-Centered Design (UCD) [8] is an approach that prioritizes the needs and preferences
of end-users throughout the development process. It emphasizes understanding users goals,
behaviors and expectations to create intuitive and user-friendly interfaces. UCD involves
conducting user research, usability testing and iterative design to continuously improve the
user experience. By incorporating UCD principles, collaborations can ensure the success
and acceptance of the application among users. It promotes effective communication, re-
duces misunderstandings and enhances user satisfaction. User-Centered Design is essential
for creating interfaces that align with user requirements and integrate smoothly with existing
workflows.

3 Research methodology

The development of the ALICE Service Work system relies heavily on continuous communi-
cation with its end users. The aim is to gather valuable information on system usage and user
needs, which is then used to drive the development process. The iterative nature of the devel-
opment allows for the implementation of user-suggested solutions, making the app adaptable
and responsive to user requirements.

End users are actively encouraged to provide feedback on their experience, usage patterns
and any challenges they encountered. Different communication tools, such as Mattermost and



Outlook are constantly being used to keep in contact with end-users as well as direct reports
through JIRA [9] task creations built in the app.

To assess the prioritization of incoming requests within the system, requests are catego-
rized based on predefined criteria, such as urgency, impact and complexity. Each request is
assigned a priority level after a brief discussion between the scrum product owner and the
stakeholders, enabling the system to allocate appropriate resources and address high-priority
issues promptly.

4 Development and implementation

The development of the web application for the ALICE Service Work system followed a sys-
tematic and iterative approach. The project began with a thorough analysis of the experiment
requirements, including the needs of collaborators, team leaders and administrators. This in-
volved conducting interviews to gather insights into the desired features and functionalities.

Based on the gathered requirements, the development team proceeded with the design
phase. User-centered design principles were employed to ensure the usability of the web app
and intuitive navigation. Wireframes were created and validated through iterative feedback
loops involving stakeholders.

After the design phase, the development team moved on to the implementation stage, with
its schema represented in Figure 3. They utilized modern PHP web development frameworks
and technologies to create a robust and scalable web application that serves as endpoints for
HTTP protocol data manipulations that comes from a JavaScript frontend user interface. Dur-
ing the development process, they also prioritized security and privacy in line with CERN’s
requirements. This involved implementing measures like access controls and secure Single
Sign-On (SSO) authentication provided by the IT department. The Slim framework [10] was

Figure 3: Service Work implementation.

used to build the web application’s infrastructure with a minimalistic yet powerful foundation
for the RESTful API, with possibility for handling routing and middlewares.

To interact with an Oracle database (also provided by the CERN IT infrastructure) the
team incorporated the Doctrine DBAL library [11], a database abstraction layer that simplifies
database access query building and result handling, enabling seamless integration with Oracle
and ensuring efficient and secure data operations.

In the frontend, to enhance the user interface and provide a seamless and responsive expe-
rience, the development team incorporated the Vue.js framework [12], along with Vuetify.js
[13] and Vuex libraries [14].



Vue.js allowed for the creation of dynamic and interactive user interfaces, enabling a
smooth and reactive user experience. The team leveraged Vue.js components and directives
to build reusable UI elements and implement frontend logic.

Vuetify.js, a Material Design component framework for Vue.js, was used to improve the
visual aesthetics and ensure consistent styling throughout the web app. Vuetify’s pre-built
components and theming capabilities expedited the frontend development process.

Vuex, a state management pattern and library for Vue.js, facilitated centralized state man-
agement and provided a scalable approach to manage application data. With Vuex, the team
efficiently handled shared data and implemented actions, mutations and getters to maintain
application state.

By integrating Vue.js with Vuetify.js and Vuex, the ALICE Service Work system achieved
a modern and responsive user interface, seamless data flow and enhanced frontend function-
ality.

4.1 Implementation challenges and solutions

During the implementation phase, several challenges were encountered. One significant chal-
lenge was the integration of the application with existing CERN internal solutions, such as
the SSO for authentication. With the possibility of introducing middlewares with Slim, the
solution could be made modular and shared through all the Glance team projects, reducing
the amount of time needed. A second example could be the management of the dynamic
relationships between ever-changing data elements, where modifying one data point could
trigger chain reactions, requiring a reliable solution to handle these ties automatically. To
address this challenge, we introduced an event-driven architecture. In this setup, specific key
actions prompt predefined responses or workflows within the system, eliminating the need
for a fixed, step-by-step sequence of operations. These workflows adjust dynamically to the
context, ensuring adaptable and efficient handling of various scenarios and enhancing the
system’s overall flexibility and efficiency.

4.2 User feedback and satisfaction

Once the app was deployed, user feedback was collected to assess its effectiveness and user
satisfaction. Interviews were conducted with coordinators and managers to gather their opin-
ions and suggestions for improvement.

5 Findings and discussion

After the analysis of all the requirements, we came up with a list of key features and func-
tionalities for the Service Work system, which are described below.

5.1 Key features and functionalities

5.1.1 Task management

The web app offers a robust task management system, see Figure 4, that empowers users to
efficiently create, assign, and track service work tasks throughout the year. These tasks can be
conveniently categorized based on the relevant projects and activities, allowing for effective
organization and streamlined workflow.

Tasks can be assigned to collaborators in a many-to-many relationship. Each assignment
includes associated credits, representing a fraction or the total Full Time Equivalent (FTE) of



Figure 4: Task interface example.

the assignee, along with a designated period of validity. This critical information is utilized
to calculate individual workloads, preventing members from becoming overburdened with an
excessive amount of tasks.

5.1.2 Year planning

The app offers a comprehensive year planning module that empowers coordinators to create
and manage the work calendar effectively. With this module, coordinators can define the an-
nual workload of the collaboration in advance, set FTE thresholds to determine if teams are
underbooked or overbooked, and restrict certain actions, such as creating new assignments.
Additionally, the year planning module provides coordinators with a view of the current sit-
uation and evolution of the entire collaboration, enabling them to make informed decisions
and effectively manage resources.

5.1.3 Credits accounting

The Credits accounting feature is a vital component of the system, responsible for accu-
rately calculating work contributions. Each task within the system has its own set of assign-
ments and plannings, where assignments are associated with specific credit values. It ensures
that the total sum of assignment credits during a designated planning period aligns with the
planned credits for that period. These credits are attributed to the assignee’s respective team,
helping them progress towards their annual credit goal.

5.2 Usability and User Experience Analysis

The feedback received from users was largely positive. Team leaders appreciated the user-
friendly interface, streamlined access to their team’s tasks data and the ability to assign duties



to them. Overall, the user feedback indicated a high level of satisfaction with the app, high-
lighting its effectiveness in improving operational efficiency. However, some users suggested
minor improvements to enhance performance issues and data gathering.

5.3 Identification of challenges

Despite its numerous benefits, the web application also faces few challenges that need to be
addressed for optimal performance and user satisfaction and which are described below.

5.3.1 Increased data import options

One of the identified challenges is the need for increased data import options within the web
application. Currently, there are instances where specific task assignment data originates from
external sources, such as the ALICE collaboration website and human resources databases.
However, the system does not fully cover the range of possible data entry points, resulting in
the need for manual insertion into the database using direct SQL queries. This manual process
introduces the risk of human errors and consumes valuable time that could be better utilized
for development tasks. By providing support for a wider range of data import options, the
application can reduce human errors associated with manual data entry and allow the team to
allocate more time towards development efforts.

5.3.2 Better integration with external apps

The service works are just a part of all the activities done within the ALICE Collaboration,
other kinds of tasks such as experimental shifts in the control room or on-call, for example, are
credited via the ALICE Shift Accounting Management System (SAMS), also developed by
the Glance Team. One of the main need of the collaboration is the possibility that information
about both types of tasks be shared between these systems in a dashboard, enabling a broader
visualization of the total work done by the teams. However, the challenge lies in the different
timeline of the two systems’ development. The SAMS system being considerably older than
the Service Work system has resulted in integration difficulties due to legacy implementations
and data inconsistency.

6 Conclusion

In conclusion, the ALICE Service Work system has successfully addressed the challenges
associated with managing a large number of tasks within the ALICE collaboration at CERN.
By adopting Domain-Driven Design (DDD) and the Hexagonal structure, the system exhibits
a modular and scalable architecture that promotes flexibility and maintainability. The user-
centered design principles implemented throughout the development process have resulted in
an intuitive and user-friendly interface.

Through continuous communication with end-users, the development team gathered valu-
able feedback and implemented the solutions suggested by the users, resulting in an adaptable
and responsive system. The key features and functionalities of the system, have proven to be
effective in organizing and displaying service work activities.

Although the development process encountered challenges, the findings provide valu-
able insights for future improvements. Recommendations include implementing agnostic
assignment import, enhancing the user interface and user experience, standardizing data and
exploring integration with existing systems.



Overall, the ALICE Service Work system has significantly improved coordination and
management within the collaboration, reducing administrative burdens and enhancing oper-
ational efficiency. By providing a user-friendly platform, the system allows for increased
focus on experimental aspects. Future improvements based on the identified challenges and
recommendations will further optimize the system and support the collaboration goals and
needs.

Acknowledgments

The authors would like to thank CNPq, CAPES, FAPERJ and RENAFAE (Brazil), as well as
CERN and the ALICE collaboration for providing financial support for this work. We also
thank Mr. Joel Closier for supporting the preparation of the presentation and related paper.

References

[1] The ALICE Collaboration, JINST 3, S08002 (2008)
[2] Welcome to the ALICE Collaboration - General Information, URL https://alice-

collaboration.web.cern.ch/general-information [accessed 21-Jul-2023]
[3] C. Maidantchik, F.F. Grael, K.K. Galvão, K. Pommès, J. Phys.: Conf. Ser. 119, 042020

(2008)
[4] The ATLAS Collaboration, JINST 3, S08003 (2008).
[5] The LHCb collaboration. JINST 3, S08005 (2008).
[6] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software.

(Addison-Wesley Professional, Boston, 2004)
[7] A. Cockburn, Hexagonal Architecture (2005), URL

https://alistair.cockburn.us/hexagonal-architecture/ [accessed 21-Jul-2023]
[8] D. Norman, J. Nielsen. The Definition of User Experience (Nielsen Norman Group,

2010), URL https://www.nngroup.com/articles/definition-user-experience/ [accessed 21-
Jul-2023]

[9] Atlassian. Jira Software, URL https://www.atlassian.com/software/jira [accessed 08-
Aug-2023]

[10] The Slim Framework Team. Slim Framework, URL https://www.slimframework.com/
[accessed 21-Jul-2023]

[11] Doctrine Project. Database Abstraction Layer, URL https://www.doctrine-
project.org/projects/dbal.html [accessed 21-Jul-2023]

[12] Vue.js - The Progressive JavaScript Framework, URL https://www.vuejs.org/ [accessed
21-Jul-2023]

[13] Vuetify - A Vue Component Framework, URL https://vuetifyjs.com/en/ [accessed 21-
Jul-2023]

[14] What is Vuex?, URL https://vuex.vuejs.org/ [accessed 21-Jul-2023]


	Introduction
	Foundation
	Domain-Driven Design
	Hexagonal architecture
	User-Centered Design

	Research methodology
	Development and implementation
	Implementation challenges and solutions
	User feedback and satisfaction

	Findings and discussion
	Key features and functionalities
	Task management
	Year planning
	Credits accounting

	Usability and User Experience Analysis
	Identification of challenges
	Increased data import options
	Better integration with external apps


	Conclusion

