

Automatic Monitoring of Large-Scale Computing
Infrastructure

Bockjoo Kim* and Dimitri Bourilkov
Department of Physics, University of Florida, Gainesville, FL 32611, U.S.A.

Abstract. Modern distributed computing systems produce large amounts
of monitoring data. For these systems to operate smoothly, under-
performing or failing components must be identified quickly, and preferably
automatically, enabling the system managers to react accordingly. In this
contribution, we analyze jobs and transfer data collected in the running of
the LHC computing infrastructure. The monitoring data is harvested from
the Elasticsearch database and converted to formats suitable for further
processing. Based on various machine and deep learning techniques, we
develop automatic tools for continuous monitoring of the health of the
underlying systems. Our initial implementation is based on publicly
available deep learning tools, PyTorch or TensorFlow packages, running on
state-of-the-art GPU systems.

1 Introduction

LHC [1] experiments produce a huge amount of data daily whether they are coming from the
Proton-Proton collisions at CERN or the Monte Carlo (MC) simulations. CMS [2], one of
the LHC experiments, distributes data produced at the LHC to various sites called Tier1,
Tier2, or Tier3 sites. The collision data produced at CERN and the samples produced by the
Monte Carlo simulation at CMS Tier2 sites need to be replicated and transferred to various
sites. To move data and the MC samples around various sites, CMS sites provide data read
and write service using XRootD [3]. In addition to the transfers of the data and the samples
between XRootD servers, the stored data and the samples in each site are read by the MC
production jobs and the physics analysis jobs.

Particularly, XRootD servers in the data centers are the backbone of the sample transfer
system as well as the data access by the MC production jobs. The physics analysis jobs are
producing its own monitoring data constantly. The monitoring data for the data and the
sample transfers are accumulated through one of the data and the sample transfer systems
called Rucio [4]. On the other hand, the monitoring data for the data and the sample access
by various jobs are needed to be monitored through the specially designed monitoring system
called the XRootD Monitoring Collector [5][6].

The XRootD Monitoring Collector is ingesting monitoring data from the XRootD server,
aggregating it into one monitoring record per file read, and sending a resulting JSON-
formatted record into an AMQP-based message bus. The XRootD Monitoring Shoveler [7]

* Corresponding author: bockjoo@phys.ufl.edu

is designed to accept the XRootD monitoring packets at each site and shovel them to the OSG
[8] message bus in the XRootD Monitoring Collector using a UDP stream. The XRootD
Monitoring Collector and the XRootD Monitoring Shoveler are developed by the OSG
XRootD monitoring team. The monitoring data used in this article are further sent to the
Elasticsearch database at CERN and this article mainly use the monitoring data produced at
sites with the XRootD Monitoring Shoveler.

For the XRootD system to operate smoothly, underperforming or failing components
must be identified quickly, and preferably automatically, enabling the system managers to
react accordingly. To accomplish this, we can use the XRootD monitoring data to be
processed by a deep machine learning technique for the automatic monitoring of the health
of the XRootD system at sites.

Machine learning techniques are ubiquitous. The XRootD monitoring data that are
collected have a few typical features that fit best for certain machine learning techniques.
Since the XRootD monitoring data are recorded in sequence, one can consider the analysis
of the monitoring data with the time series technique. However, the monitoring data is not
always fed into the monitoring system in order of the time as the time to read XRootD data
is different depending on the size of the files read through the XRootD. As a result, one can
consider a feature-based deep learning technique.

The article will describe the sample collection in Section 2. In Section 3, we describe how
we selected features used in the study. In Section 4, we describe how we used the deep
learning technique to check the health of the XRootD site automatically. In Section 5, we
present the results of the study. Lastly, we present plans for future studies related to this
study.

2 Sample Collection
The MC production and the physics analysis jobs are running all over the CMS Tier2 sites.
These jobs are accessing the data at the CMS Tier2 sites either through read activities or write
activities. These activities create traces of bytes in and out of the XRootD servers.

Figure 1 Sample Collection Process

The XRootD Monitoring Shoveler at a site can keep track of these activities. The
monitoring data that went through the XRootD Monitoring Shoveler are sent to the XRootD

T2_US_Florida

Site

Florida

XRootD
Server

XRootD
ServerXRootD
Server

Shoveler

TCPUDP

Monitoring
Collector RabbitMQ

OSG
All

Usage

Message

Bus

GRACC Stomp
Shoveler

OS
G

St
as
hC
ac
he W

LCG

Usage

WLCG
ActiveMQ

CERN ESDB

UDP

Jobs

Nebraska

Jobs

Caltech Jobs

Purdue
Jobs

Wisconsin

Jobs

MIT
Jobs

Vanderbilt

Jobs

UCSD

Jobs

FNAL

Jobs

Florida

Monitoring Collector at OSG using the UDP stream instead of TCP to prevent loss of packets.
The collected XRootD monitoring data are eventually stored in an Elasticsearch database at
CERN. Since there are CMS sites that are not in the U.S., the final destination of the
monitoring data is the Elasticsearch database at CERN. Typically, the Elasticsearch database
can be accessed through the Grafana monitoring system. The whole sample collection
process is depicted in .

For the analysis of the monitoring data, the XRootD monitoring data stored in the Grafana
monitoring system is accessed using a python script. The python script extracts the XRootD
monitoring data in the JSON format.

At the moment, there are only US sites with the XRootD Monitoring Shoveler. As a result,
there is only limited access to the monitoring data. We decided to study the monitoring for a
single site where the data read activities are monitored. Consequently, we have implemented
the sample collection script to collect the monitoring data for all sites. An example output in
the JSON format downloaded from the Grafana server is shown in Figure .

Figure 2 An example of sample collection in the JSON format

Most machine learning utilities use samples in the CSV format. Once the monitoring sample
is downloaded from the Grafana in the JSON format, the JSON format is converted to a CSV
format, and the raw CSV is saved as a zip file. A single zip file corresponds to 6 hours of
monitoring samples.

3 Feature and Target Output Selection

Once we have collected the monitoring samples for the analysis of the health of the XRootD
system, we need to decide what is the most relevant information in the monitoring samples
that can be fed into one of the machine learning techniques. There are a total of 51 variables
that can be used for a machine learning technique as one can see from Figure . Some of the
attributes may not be appropriate as features in machine learning as they have values that do
not discriminate characteristics of the monitoring sample. Those with the value 0 do not
contain any information that can discriminate against the health of the XRootD system.
Although one can use some machine learning techniques to convert string values into
numerical values, some of those variables with string values are not useful in discriminating
the characteristics of the monitoring sample. On the other hand, the file size, the read rate,
and the variables related with the network are features of interest for an obvious reason as
the monitoring data are related with the file access operation.

We chose a machine learning technique that helps to select the appropriate features.
Among the many machine learning techniques and considering the monitoring samples at
hand, we select a technique for the file read activity that ranks the input features and produces
the target output. For this type of machine learning model, we chose these features as the
input for a deep learning model: ‘read_bytes’, ‘file_size’, ‘read_bytes per file_size’, ‘ipv6’,

and ‘operation_time’. ‘read_bytes’ is the number of bytes read by the XRootD server.
‘file_size’ is the size of the file that is read. ‘read_bytes per file_size’ is the number of bytes
read divided by the size of the file read and is a feature derived from ‘read_bytes’ and
‘file_size’. ‘ipv6’ is a logical variable that shows whether the read activity is through the
IPv6 or not. ‘operation_time’ is the time it took to read a file. Also, the most important
characteristic in the read activity has to be chosen to predict the health status of the XRootD
system. The variable ‘throughput’ is also measured. In file transfers or file read activities, the
throughput is the most important variable that can represent the health of the XRootD system
and is thus chosen as the target variable to predict the health status of the XRootD system.

Figure 2 Feature Importance and Permutation Importance

Once the features are chosen, it would be useful to understand the importance of features.
In Scikit-learn [9], there is a machine learning implementation to measure the importance of
the features. The ‘Gradient Boosting’ in the Scikit-learn is used to measure the importance
of the features. The feature importance and the permutation importance are shown in Figure
2 . We can see the operation time has the highest importance as we can expect this from
intuition.

4 Monitoring of the XRootD System

There are various deep learning techniques that can be used for the XRootD monitoring
samples. We have tried to follow similar examples to save time in finding the best technique.
One example that detects anomalies in a time series can be found in Keras [10]. Another
example is an application of deep learning algorithms to alarm for grid jobs [11]. A directly
related technique is prediction of file transfer durations using Keras [12]. One of these
techniques may be used for the XRootD monitoring samples, but the best technique needs to
be chosen to monitor any deviation of the XRootD system behavior. Once a technique is
chosen, next is getting the best model, applying the model to the XRootD monitoring
samples, and defining the metric that needs to be monitored.

4.1 The Machine Learning Technique
We could try the technique used in the ref. [12] which utilize data transfer samples similar to
what we are using in this study and have initially considered the possibility of using the Long
Short-Term Memory (LSTM) networks, which is what is used in the ref. [12], a type of
recurrent neural network capable of learning order dependence in sequence prediction as we
are dealing with a sample of time series. However, the XRootD monitoring samples are

recorded not necessarily in order of time because of the file size difference. Instead, we have
decided to use a simple deep learning algorithm based on the Keras sequential model as is
shown in Figure 4.

Figure 4 A neural network model that is used for the monitoring of the XRootD system

4.2 Implementation of the Machine Learning Model
The training and validation samples are chosen from initial samples collected for two weeks.
The samples have 40 million events with 54 variables from which one can choose the model
features.

The saved monitoring samples must be reduced as they contain information that can not
be used directly to build the machine learning model. For this study, we have focused on one
site (Florida) and limited the read activities to allow only from nine U.S. sites. Here, nine US
sites are one Tier1 site at FNAL and eight Tier2 sites at Caltech, Florida, MIT, Nebraska,
Purdue, UCSD, Vanderbilt, and Wisconsin. For the input layer for the machine learning
model, five features are selected as is shown in Figure 4. The features, file size and duration,
are required to be greater than zero as the zero value of these features do not provide any
useful information. In addition, the throughput value is also required to be greater than zero.
After reducing samples by requiring these conditions, we have chosen 80% of the sample for
training and 20% for validation. One of the features, ipv6-ness, is not numerical and we have
used the SciKit-Learn encoder to encode the feature. We have used the Sequential model in
Tensorflow’s Keras module to build the machine learning model.

4.3 Optimizing and Saving the Machine Learning Model
To optimize the performance of the model selected, we tuned the model hyperparameters
such as number of hidden layers, application of regularization, and addition of dropout layers
to ensure the model does not overfit and will generalize well on the testing data.

Each combination of the number of hidden layers, the regularization function, and dropout
layers is tried by checking the learning curve. Eventually, we have decided to use 12 hidden
layers with 512 units each, the ReLU activation, the Adam optimizer, and a configuration of
an early stopping. Since the model is decided, the model is built and saved to a file for the
test samples that need to be monitored for the health of the XRootD system.

4.4 Monitoring XRootD Health Metric
The health of the XRootD needs to be monitored automatically and we need to define the
metric that can tell the health of the XRootD system. We could use the method provided by
the deep learning packages, e.g., the binary classifier. However, for the metric we wanted to
monitor for the health, we decided to use the root mean squared error (RMSE) of the
throughput. The metric is defined as:

𝑅𝑀𝑆𝐸	 = 	'
1
𝑛)

(𝑂𝑇𝑃! 	− 	𝑃𝑇𝑃!)2
"

!#1

			

where n is the number of samples in a given interval, 𝑂𝑇𝑃! is the i-th observed throughput,
𝑃𝑇𝑃! is the i-th throughput predicted by the machine learning model.

To determine whether the XRootD system is healthy or not, we monitor the RMSE
variation for each combination of the site and 10 clients that read files on the XRootD server
of the site.

5 Discussion

Using the technique described in Section 4, we have monitored the health of the XRootD
system at one site (Florida) that we focused on using the average throughput 𝑂𝑇𝑃! and its
RMSE. The average 𝑂𝑇𝑃! and its RMSE during the one-week period as a function of the
clients that read files on the XRootD server site is shown in Table 1.

Table 1 Typical average throughput and its RMSE of one week period for an XRootD server site. Each column
represents the site where the clients were reading files from the XRootD server site.

Client Site Caltech Florida MIT Nebraska Purdue UCSD Vanderbilt Wisconsin FNAL

OTP
(MB/s)

0.9 1.42 0.68 0.95 0.13 1.24 0.43t 0.26 0.26

RMSE
(MB/s)

1.57 1.89 1.35 2.53 0.71 3.67 2.36 1.69 1.12

The average 𝑂𝑇𝑃! is typically very small and varies substantially among client sites. In the
typical data transfer rate between sites, the throughput is much higher and at least an order
of magnitude higher than this read throughput. RMSE is also comparable to the 𝑂𝑇𝑃!. We do
not have the information of the variation of these due to limited time but during our limited
monitoring period, we noted RMSE is stable and this means RMSE is a good metric of
monitoring the health of the XRootD system.
 As was described in Section 4.4, we monitored the RMSE variation. We chose the
variation of the RMSE to be within 1.5 of the trained RMSE value for a site to be healthy.
This choice of the condition for a healthy site was arbitrary after observing only for a few
weeks of data. However, this can be tuned further.
 Obviously, we will need more samples to have more stable choice of the health condition.
In addition, we could try to explore other possible metrics.

6 Outlook

We have presented the monitoring for a XRootD server site we focused on. We have seen
the metric we chose behaves stably and we can expand this technique for other XRootD
Shoveler sites. For the client site, we could have included other sites as well. We could also
add other client sites to regularly monitor the metric.

Currently, there is a very limited number of features, but we also plan to include more
features as they become available in predicting the throughput and monitoring the metric. In
addition to the throughput for the read activity, once the XRootD Shoveler can handle the
write activity, we could also add the write throughput.

It would be very informative to monitor the variation of 𝑂𝑇𝑃! as a function of the
monitoring period as it can tell us the health of the XRootD system. In addition to the RMSE,
we can consider a study of the health metric that can be used.

Acknowledgement
We appreciate the development of the Shoveler monitoring by the Open Science Grid team.
With the reliable Shoveler, this study was possible to use the collected samples.

References

[1] Lyndon Evans and Philip Bryant, LHC Machine, JINST 3 S08001(2008).
[2] The CMS Collaboration, et. al., The CMS experiment at the CERN LHC, JINST 3
S08004(2008).
[3] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, Xrootd - A highly scalable
architecture for data access, WSEAS Transactions on Computers (2005).
[4] M. Barisits, et.al., Rucio: Scientifc Data Management, Computing and Software for Big
Science (2019) 3:11.
[5] D. Weitzel, et. al., XRootD Monitoring Collector, https://zenodo.org/record/4670589
[6] B. Garrido, A. Forti, D. Weitzel, J. Andreeva, and S. McKee, New XRootD Monitoring
implementation, To Be Submitted to the CHEP2023 Proceedings.
[7] D. Weitzel, et. al., XRootD Monitoring Shoveler, https://zenodo.org/record/8269867
[8] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K.
Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J.
McGee, and R. Quick, The open science grid, J. Phys. Conf. Ser., 78, 012057(2007).
https://doi.org/10.1088/1742-6596/78/1/012057
[9] F. Pedregosa, et. al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-
2830(2011).
[10] F. Chollet, et. al., Keras, Available at https://github.com/fchollet/keras(2015) and
Timeseries Anomaly Detection Example, Available at
https://keras.io/examples/timeseries/timeseries_anomaly_detection/
[11] E. Torres, Applying Deep Learning Algorithms to Alarm/Anomaly Detection for Grid
Jobs, FNAL SIST Program (2017)
[12] V. Sharma, Keras predicting random file transfer durations,
https://github.com/vyomshm/Keras-predicting-random-file-transfer-durations (2017)

https://zenodo.org/record/4670589
https://zenodo.org/record/8269867
https://doi.org/10.1088/1742-6596/78/1/012057
https://github.com/fchollet/keras
https://keras.io/examples/timeseries/timeseries_anomaly_detection/
https://github.com/vyomshm/Keras-predicting-random-file-transfer-durations

